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ABSTRACT

The instant form and the front form of relativistic dynamics introduced by Dirac in
1949 can be interpolated by introducing an interpolation angle parameter ¢ spanning
between the instant form dynamics (IFD) at 6 = 0 and the front form dynamics,
which is now known as the light-front dynamics (LFD) at § = 7. We present the
Poincaré algebra interpolating between instant and light-front time quantizations.
We show the Boost K? is dynamical in the region where 0 < § < 7 but becomes
kinematic in the light-front limit (6 = F). We show this will then be extended to

Conformal algebra.

il
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Chapter 1

INTRODUCTION

“ Working with a front is a process that is unfamiliar to physicists. But still, I feel
that the mathematical simplification that it introduces is all-important. I consider
the method to be promising and have recently been making an extensive study of
it. It offers new opportunities, while the familiar instant form seems to be played

out 7 - P.A.M. Dirac (1977)

For the study of relativistic particle systems, Dirac [11] proposed three different
forms of the relativistic Hamiltonian dynamics in 1949: i.e. the instant (z° = 0),
front (z* = (2° + 2%)/v/2 = 0), and point (z,2" = a* > 0,2° > 0) forms. The
instant form dynamics (IFD) of quantum field theories is based on the usual equal
time ¢t = 2 quantization (units such that ¢ = 1 are taken here), which provides a
traditional approach evolved from the non-relativistic dynamics. The IFD makes a
close contact with the Euclidean space, developing temperature-dependent quantum
field theory, lattice QCD, etc. The equal light-front time 7 = (t + z/c)/V/2 =
" quantization yields the front form dynamics, nowadays more commonly called
light-front dynamics (LFD), which provides an innovative approach to the study of
relativistic dynamics. The quantization in the point form (z*z, = a* > 0,2° > 0)
is called radial quantization. Among these three forms of relativistic dynamics
proposed by Dirac, however, the LFD carries the largest number (seven) of the
kinematic (or interaction independent) generators leaving the least number (three)

of the dynamics generators while both the IFD and the point form dynamics carry



six kinematic and four dynamic generators within the total ten Poincaré generators.
(15,16, 20]

The instant form and the front form of relativistic dynamics introduced by Dirac
[11] in 1949 can be interpolated by introducing an interpolation angle parameter &
spanning between the instant form dynamics (IFD) at 6 = 0 and the front form
dynamics, which is now known as the light-front dynamics (LFD) at § = 7. This
Interpolation method was first introduced by Kent Hornbostel in 1992 [14]. Then
Chueng-Ryong Ji [15-20] pioneered the idea of connecting the instant form dynamics
and the light-front dynamics and contributed to utilizing the light cone in solving
relativistic bound state and scattering problems.

In Chapter 4, we will present the Poincaré algebra in Interpolation form. We
will show the Boost K3 is dynamical in the region where 0 < § < 7 but becomes
kinematic in the light-front limit (0 = 7).

In Chapter 2, we will go through the formal development of Poincaré algebra.
In Chapter 3, we will look at the formulation of light-front dynamics essential for
our work. Chapter 4 will develop the interpolation method between Instant Form
Dynamics (IFD) and Light Front Dynamics (LFD). Finally, in Chapter 5, we will
formally develop the Conformal algebra and show how this Interpolation method

can be extended to Conformal algebra.



Chapter 2

Poincaré Algebra

The Poincaré algebra is the Lie algebra of the Poincaré group. In this chapter, we

will introduce the basic notions of Poincaré algebra.

2.1 Continuous Group

Continuous group: group parameters take continuous value.

2.1.1 The Rotation

We shall first briefly review the Continuous Rotation Group. This will then be
extended to the Lorentz group. [1-3]

A general spatial rotation is of the form
r' = Rr; (2.1)

R is the rotation matrix. Since rotations perserve distance from the origin, z'? +

y?+ 2% =22+ y? + 22, or r'Iy' = rTr (T = transpose), so

r"RTRr = "7, (2.2)

R'R=1, (2.3)

and R is an orthogonal 3 x 3 matrix. These matrices form a group: if R; and R,

are orthogonal, so is R Rs:

(RiRy)"RiRy = RERTRIRy = 1, (2.4)



This group is denoted O(3); for matrices in n dimensions it is O(n). Unitary ma-
trices also form a group, denoted U(n), but Hermitian matrices do not, unless they
commute.

As an example of a rotation, consider a rotation of a vector V about the z
axis. This rotation, considered as an active rotation (i.e. a rotation of the vector,
leaving the co-ordinate axes fixed), is left-handed; considered as a passive rotation

(i.e. rotating the axes, leaving the vector fixed) it is right-handed. We have

Vi) cosf sinf 0 Ve
Vo | = | —sinf cosf 0 Vil (2.5)
V! 0 0o 1) \v

so may denote the rotation matrix by
cosf sinf 0
R.(0) = | —sinf cos® 0 (2.6)

Similar matrices for rotations about the x and y axes are

1

R.(¢) =10 cos¢ sing (2.7)
0 —sing coso¢

cosyy 0 —sin )

R:c(w): 0
sinyy 0 cosv

(2.8)

Note that these matrices do not commute

Ro(9)R.(0) # R.(0)Re(0) , (2.9)

the rotation group, O(3), is non-Abelian. It is a Lie group; that is, a continuous
group, with an infinite number of elements, since the parameters of rotation, which
are angles, take on a continuum of values. It is easy to see that a general rotation has
three parameters; R has nine elements, and equation (2.3) gives six conditions on

them. These parameters may, for example, be chosen to be the three Euler angles.



Corresponding to three parameters are three generators defined by

0 — 0
1dR.(6)
, = = = ) , 2]_
J i do ‘0:0 1 00 (2.10)
0O 0 O
00 O
1de(¢)
sz—.—‘ = —il, 2.11
i do oo 00 —i (2.11)
0 ¢+ O
0 0 2
1dRy(¢)’
JZJ i d@[) =0 0 0 0 ( )
— 0 0

These generators are Hermitian, and infinitesimal rotations are given by, for exam-

ple,
R.(60) =1+4iJ.00, R,(6¢)=1+iJ,09. (2.13)

The commutator R,(60)R,(60) R (560) R (56) of these two rotations (compare ((2.9)))

may now be calculated using the easily verified commutation relations
Jpdy — JyJy = [Jy, Jy] =i, and cyclic permutations . (2.14)

To first order, it is found to be a rotation about the y axis. The relations ((2.14)),
having a factor h, will be recognised as the commutation relations for the compo-
nents of angular momentum. So angular momentum operators are the generators of
rotations.

It is now straightforward to write down the rotation matrix for finite rotations.
The matrix corresponding to a rotation about the z axis through an angle § =

N 660 (N — o0) is clearly [3]

R.(0) = [R.(30)]"
= (1 +iJ.00)" |

o\ N
pr— 1 1 —
( —HJZN) ,

= el (2.15)



We may check that this yields the required matrix ((2.6)). Defining the exponential

by its power series expansion, we have

’ 62 63
el =1 4id0—iJ = —iJP .. (2.16)
2! 3!
1 00 0 10 -1 0 0
92
=101 0]+0]-1 00 +§ 0O -1 0 +... (2.17)
0 01 0 00 0O 0 0
cosf) sinf 0
= | —sinf cosf 0| , (2.18)

0 0 1

which is ((2.6)).

2.1.2 The Boost

Pure ‘boost’ Lorentz transformations are those connecting two inertial frames, mov-
ing with relative speed v. If the relative motion is along the common z axis, the

equations are

0 VT
1 _ x' 4 vt : :L‘Z/:xQ; xS/:x:S; 2V — z +c_2. (2.19)
v2 v2
T2 =
Putting v = ——— and 8 = 2. Observing that v — 3?7? = 1, we may put
-4 ¢
v = cosh ¢, 83 = sinha, (2.20)

thus parameterising the transformation in terms of the variable ¢, with tanh ¢ = 2,

and we have [1,2,4]

Y coshg sinh¢ 0 0\ [z°
xl’ sinh¢® coshd 0 0 x!
- ¢ ¢ (2.21)
x? 0 0 10 x?
3 0 0 0 1 x3



Let us call the above matrix the boost matrix B. The generator K, of this boost

transformation along the x axis is defined by analogy with ((2.12)):

0100
1dB 1000
K, = —,d—w) =— (2.22)
i d¢ ls=o 0000
0000
Similarly, the other boost generators are
0010
0000
K,=—i , (2.23)
1000
0000
0001
0000
K,=—i , (2.24)
0000
1000
(2.25)

In this 4 x 4 matrix notation, the rotation generators ((2.12)) may be written

: (2.26)

o o o O

0 0
0 0 0
0 1
0 0

: (2.27)

o o o O

(2.28)

o o o o
|
—_
o o = o
o o o o



The most general Lorentz transformation is composed of boosts in three directions,
and rotations about three axes, and the six generators are those above. Their

commutation relations may be calculated explicitly, and we find [2]

|K,, K] = —iJ, and cyclic perms, (2.29)
[Je, K] =0 etc., (2.30)
[/, K] = iK, and cyclic perms, (2.31)

together with ((2.14)), involving Js only. An interesting consequence of these rela-
tions is that pure Lorentz transformations do not form a group, since the generators

K do not form a closed algebra under commutation.

2.2 Lorentz Group
The Lorentz boost can be written in matrix form as [1, 2]
' = A (2.32)
In terms of components, this can be written as
' = A, (2.33)

where we have defined the components of the matrix A by

v 8 0 0
0 0

AP = 705 g o (2.34)
0 0 01

We will now find the necessary and sufficient condition for a 4 x 4 matrix A to leave
the inner product of any two 4-vectors invariant. Suppose A* and B* transform by

the same matrix A:
AW = ARA®, BM = ABY. (2.35)
Then the inner products A’.B’ and A.B can be written as

ALB" = (g, AN A*B”, (2.36)
AgBP = g,3A“B". (2.37)



In order for A’.B' = A.B to hold for any A and B, the coefficients of A%B” should

be the same term by term:

G NENG = o | (2.38)

2.2.1 Generators of the Lorentz Group

The goal is to show that any element A that is continuously connected to the identity

can be written as [1,2]
A = eEifitlidi (=12 3) | (2.39)

where &; and 0; are real numbers and K; and L; are 4 x 4 matrices. Such group
whose elements can be parametrized by a set of continuous real numbers (in our
case they are & and 6;) is called a Lie group. The operators K; and L; are called

the generators of the Lie group.

2.2.2 Infinitesimal Transformations

Let’s start by looking at a Lorentz transformation [1,2] which is infinitesimally close

to the identity:

Al =gb + Wl

v v

(2.40)

where w” is a set of small (real) numbers. Inserting this to the defining condition

((2.38)), we get

Jap = Mval\j (2.41)
= (Gva + an)(gg + W;) )

= gap + Wa + Wap + WyaWj. (2.42)
Keeping terms to the first order in w, we then obtain
W = —Wag - (243)

Namely, is anti-symmetric (which is true when the indices are both subscript or

both superscript; in fact, w§ is not anti-symmetric under o <— 3), and thus it has



6 independent parameters:

0 Wo1  Wo2  Wo3
—Wo1 0 Wiz W13

waﬁ =
—Wp2 —Wi2 0 Wa3

—wp3 —wiz —waz 0
This can be conveniently parametrized using 6 anti-symmetric matrices as
Wap = wor (L) ag + wo2(L*%)ap + wos(L™)ag

+ w23(L23)a5 + wl?y(LlS)aﬁ + wlz(L12)a[3 )

= Z wMV(LW)aﬁ )

p<v
with
0O 1 00
-1 0 0 O
(LOl)a/J’ = )
0 00
0 00
0O 010
0O 0 0 O
(LOQ)Otﬁ = )
-1 0 0 O
0O 0 00
0O 0 01
0O 0 00
(L03)a/3 = )
0O 0 0 O
-1 0 0 0
00 0 O
00 0 O
(L23)aﬁ = )
00 0 1
0 0 -1 0

10

(2.44)

(2.45)

(2.46)



00 00
00 01
(ng)aﬁ: )
00 00
0 -1 0 0
00 00
2, =0 0 Y 2.47
(L) as (2.47)
0 -1 0 0
00 00

Note that for a given pair of p and v, (L*),s is a 4 x 4 matrix, while w" is a real
number. The elements (L"), can be written in a concise form as follows: first, we

note that in the upper right half of each matrix (i.e. for a < ), the element with

(o, B) = (p,mu) is 1 and all else are zero, which can be written as ghgj. For the

lower half, all we have to do is to flip @ and  and add a minus sign. Combining

the two halves, we get

(L") ap = ghgs — 959a- (2.48)

This is defined only for p < v so far. For u > v, we will use this same expression

((2.48)) as the definition; then, (L*"),s is anti-symmetric with respect to (1 <— v):
(L*)ap = =(L")ap, (2.49)
which also means (L*),5 = 0 if p = v. Together with w,, = —w,,, ((2.46)) becomes

v v 1 ,
Wap = Z(’u/»ll’(‘L/J )C!B - Zw/,u/(L'u )aﬁ - §WHV(L'LL )aﬁ R (250)

p<v u>v
where in the last expression, sum over all values of iz and v is implied. The infinites-

imal transformation ((2.40)) can then be written a
«a «a 1 AN
8 — 93 + 5&)“1,([/ )ﬁ s (251)
or in matrix form,
1 uw
A=T+ swu D, (2.52)

where the first indices of L*, which is a 4 x 4 matrix for given p and v, is taken

to be superscript and the second subscript; namely, in the same way as Lorentz

11



transformation. Namely, when no explicit indexes for elements are given, the 4 x 4

matrix Mp is defined as
L = (L")5 (2.53)
It is convenient to divide the six matrices to two groups as
K;=L%  J=L" (ijk cyclic). (2.54)

We always use subscripts for K; and J; since only possible values are i = 1, 2, 3.
The elements of the matrices K;’s and J;’s are defined by taking the first Lorentz

index to be superscript and the second subscript as is the case for L*”:
Ki = (K,L)g, Jz = (JJ% (255)

Later, we will see that K'’s generate boosts and J's generate rotations. Explicitly,
they can be obtained by raising the index « in ((2.47)) (note also the the minus sign
in JQ = M13)Z

01 00
1 000

Kl - )
00 00
00 00
0010
00 0O

KZ - )
1 000
00 00
0O 0 0 1
0 0 00

K3 = 5
0O 0 00
-1 0 0 O
00 0 O
00 0 O

Jl - )
00 0 1
00 -1 0



0O 0 00
0 0 01
J2 - )
0O 0 00
0 -1 0 0
0O 0 00
0O 0 10
Iy = (2.56)
0 -1 0 0
0O 0 00

An explicit calculation shows that K’s and J’s satisfy the following commutation

relations: [1,2]

K., K,] = —iJ, and cyclic perms, (2.57)
[Je, K] =0 ete., (2.58)
[Jz, K] = 1K, and cyclic perms. (2.59)

2.3 Fields: Symmetries and Conservation laws

Symmetries lie at the heart of our modern conception of physics. It is therefore
very important to understand how we formulate the symmetry properties of a given

theory and their consequences on observables. [5]

2.3.1 The Dynamics of Fields

A field is a quantity defined at every point of space and time (Z,¢). While classi-
cal particle mechanics deals with a finite number of generalized coordinates g,(t),

indexed by a label a, in field theory we are interested in the dynamics of fields [6]
q)a(fv t) ) (260)

where both a and ¥ are considered as labels. Thus we are dealing with a system with
an infinite number of degrees of freedom — at least one for each point 7 in space.
Notice that the concept of position has been relegated from a dynamical variable in

particle mechanics to a mere label in field theory.

13



2.3.2 Definitions

We consider a classical theory for some fields, collectively denoted as ®, which are
functions on a space-time manifold that we shall take to be flat RY. The dynamics
of the fields @ is fixed by a Lagrangian density £(®,0,®) or by the action S[®]
defined by [5]

Aﬂé]::/d%iX®¢L®) (2.61)

Consider a map = — 2/, where 2/ € R? is some invertible function of z € R,

together with some transformation of the fields ® — &’ defined by
V(&) = F(D(2), (2.62)

for some function S. Under such a transformation, the action will generally be
modified: S +—— S’ ,with S defined by the equation S’[®’] = S[®], and the transfor-
mation is a symmetry if S = 5.

Let us consider some examples.
Translations
Translations are simply defined by
¥ =ux+a, (2.63)

where a € R?. Most of the fields ® that we consider are scalars under translation,

that is, F' reduces to the identity:
F(®(x)) = ®(x) = P'(2") = D'(z + a). (2.64)

Rotations

Rotations are given by
" = Rix", (2.65)
where the matrix R is such that

S RURY = 6y, . (2.66)

14



The function F' corresponding to rotations is characterised by the representation
that we choose for the field . For example, for a scalar field ¢, the transformation

1S

¢'(R.x) = ¢(x) , (2.67)
where we use the common notation (R.x)" = RE.x”. For a vector field V# the
transformation is

V'"(R.x) = R*VY(2) | (2.68)

and so on for tensors of various ranks.
For a field ® transforming in any representation L of the rotation group, we write

the corresponding transformation function F' as
®'(R.x) = Lg[®(x)], (2.69)

that is, L is the linear operator representing the transformation R.

2.3.3 Noether’s Theorem

Let us consider a continuous transformation, that is, the map = —— 2’ is charac-
terised continuously by some parameters w,. We can then consider a transformation
“close to identity,” that is, for [5]

ox
= o— 2.70
r=r+w 5o (2.70)

we can write

IF(®(x))

V(') = F(0(x) = @(a) +w, "

(2.71)

where summation on the index a is understood. We define the generators G, by

0,P(x) = ®'(2) — P(x) = —iw, G, P(2), (2.72)
and hence
. oxH OF
ZGG(I) = 5—%8“(1) - 5—% . (273)

15



Consider a map = — 2, in general ¢(x) — ¢'(2'), let’s introduce the variation,

[7,8]
06 = ¢ () — ¢(x) (2.74)
0p = ¢'(2) — pl) |
0p = ¢'(2') — ¢la') + 6(a') — ¢(2) ,

0
= 56(a!) + 22
0¢ = do(x) + §—¢5zp“ ,
d¢
—0¢(x) = 66 — —5:1:“ . (2.75)

If we require that the Action ([ d*zL) is invariant under the transformation (z —

2'), then we need to show,
:/d%: <5£ + 0, (L 59:”)) : (2.76)
o () () i)
o (25 (35me) )
oo (52555) )
oz/d‘*m(au( (a;) (5¢ ¢ )) +0, (L 593”)). (2.77)

The canonical current densities is j*, such that 9,j* =0

ﬁj”:(aaﬁ <5¢—%5x )>+(£5x“),

(0.0)
7= a(aaf¢>'5¢ ) (8;6) e+ 0t
= gfw 56— Troa” (2.78)
(2.79)
where,
T = 8(?5 5 gﬁ ul (2.80)

We now identify the parameters, the generators, and associated canonical current

densities in our examples.

16



Translations

The parameters w, for an infinitesimal translation are the components a, of the
infinitesimal vector a defining the infinitesimal transformation, and thus the index

a is in this case a space-time index p : w, = a,. Using ((2.64)) we thus find that

n
0T g Oy, (2.81)
dw,, Wy

The generator, that we write P, and define by equation ((2.73)), reads

P, = —id,| (2.82)
For Translations, ¢ = 0 and dz¥ = —a*, then
gt =Tra" , (2.83)
then the conservation,
o' =011 =0. (2.84)
Rotation
A infinitesimal rotation is characterised by an antisymmetric matrix w,, = —w,,
and is given by
o't =t 4wl (2.85)

Formula ((2.70)) then yields the following variation:

"
ot _ %(&%P — P, (2.86)

dwyp
For a field ® transforming under a general representation L as in ((2.69)), the effect

of an infinitesimal rotation is of the form
Lgl®) = — %MWSW[@], (2.87)

for some operators S* = —S"* representing the rotation algebra, the numerical
factors being introduced for future convenience. Using ((2.86)) and ((2.87)), the

generators L for rotations and defined in ((2.73)) are thus given by

LM = i(a"9” — 270") + 5] . (2.88)

17



2.4 Poincaré Algebra

We recall the definition ((2.73)) of generator of an infinitesimal transformation. If
we suppose for the moment that the fields are unaffected by the transformation, the
generators of the Poincaré group are easily seen to be [5,9]
(translation) P = —iof | (2.89)
(rotation) L* =i (270" — 2"0") | (2.90)
Then the Poincaré algebra (commutation rules) can be derived as,

1) Commutation among P*,

[PH, P"] = PEPY — PYPF = (940" — 90") =0 ,

[P*, P'] = 0]V . (2.91)

2) Commutation among P? and L*,
(PP, L") = PPLM" — LM PP = —i*(0F (20" — 2 0") — (20" — 2 0") O°)
= —i? (9Pl 0" + 2T — OV O — 2L — 2O + 2 T
R (@0 — 00 = i (9P (—i0) — g (—i0")) |

(PP, 1/) = i(g"P" — g P")|v . (2.92)

3) Commutation among L,
(L%, L] = L*P L7 — L7 L
=i? ((2°0° — 2%0%) (220" — 270°) — (2°0° — 2°0°) (z°0° — 20*)) |
=42 ((xaaﬁ)(xﬂao) — (z°0°)(270") — (2°8%) (xP7) + (2°8%) (27 0")
— (2°0°)(2°0°) + (z°0°)(2°0%) + (278°)(2°0") — (xoap)(xﬁaa)) :
= ;2 ((xaaﬂxﬂaa + 22220°0° ) — (2°0°2°0° + 222°6°0P)
— (xﬁaaxpa“ +W) + (xﬂ(?“x“ap +W)
— (2P0 3°0° + 2L2oF7D°) + (2P0 2P0 + 2L#2H77)
+ (270°2°0° + 222070 ) — (270270 + m)) ,
=2 ((330‘8617”8”) — (2°0°2°0°) — (£P0%2P07) + (2P 0°x°0F) — (xPO° x*0P)
+ (P07 2P0%) + (270P2°0") — (xﬂapxﬁaa)> : (2.93)
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(Lo, LP7] = i? ((fﬂ"gﬁpa") — (2°¢"0°) — (¢7g°°0%) + (27g*°0°) — (297" 0") + (¢’ " O")
+ (27g70") — (fﬂ”gpﬁ@a)) :
= (gﬁ%’(:c“ap — 2P0%) — ¢PPi(20° — 270°) + g**i(2P0° — 2°0P)
—

(L%, LF7] = —i (g7 L™ — ¢"P L + ¢*’ L7 — g*LPP) |V . (2.94)

So, the Poincaré algebra are: [5,9]

[P, P"] =0, (2.95)
(PP, L*) =i (g™ P" — g™ P")|, (2.96)
(L9, L] = =i (g7 L% — g"P L% + g*’ L7 — g*7 L) | (2.97)

2.5 Example: Klein—Gordon (1+1)

Consider the Lagrangian [6-9] for a real scalar field ¢ in d = (1 + 1),
Lia = 50,000 — S, (2.98)
its equation of motion is given by,
O¢ + %m% =0, (2.99)
the Energy-momentum tensor is given by,
T = 0,00,0 — g L, (2.100)
4 divergence of T),,,
0Ty, = 0(0,00,0 — w«pw%—— )
= 010,00,6 -+ 000" 0,0 — 0,350,606 — %)
={M@¢+@@wa¢—§@@aﬁw—;mﬁ@%+§m%@¢,

= 060,06 + 500,06

T, = [O¢ + %m%]am =0 (2.101)
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Then

1 1 1
Too=T" = éaoﬁbaoﬁb + 53@31@25 + §m2¢2a
Toy = =T = 09019,
Tio = —T" = 0,090,

1 1 1
Tu=T" = §8O¢ao¢ + 551¢81¢ - §m2¢2.

g (300000 + 3016016 + ym*6? yox
" 31¢ao<15 %3()@235’0(;5 + %81(;58@ — %mQ(bQ
(2.102)

and our field and it’s derivatives are,

o(z) = i L [a(k',m)e™ + al(k', m)e™ ], (2.103)
NezNow
m(z) = ¢ () \Cj]; m) [a(k',m)e™ ™ — al(K',m)e™™], (2.104)
Ot p(z) = j];;_; V% [a(k!, m)e™™" — al (k' m)e™] | (2.105)
Now, let’s find the P*,

Pr = /d:cl T (2.106)

The Hamiltonian (P°) will be,
PY = / de' 7% = / dzt (%a%a% + %algbalgb + %m2¢2> , (2.107)

POZ/ 1 22 /dkl/dkll\/ k m \/ ) [a(kl,m)e_iklx—aT(kl,m)eikx]
m
X

[a(kl’, m)e—ikl/m —ate, m)eik/x]
17.17
/dk1 dkY s
22 V2w(k,m)/2w(k',m)
« [a(kll m)e—ik’m _ a]‘(]gl/’m)eik’ac}

[a(k‘l, m)e‘ikx — aT(kl, m)eikﬂ

- 1 17 1 —ikx tr1.1 ikx
+227r dk' | dk NG km\/Qw — [ (k' m)e™ + a (k', m)e™]

% [a(kll’m)e—ik’x_i_a’[(kl/,m)eik’x]) :
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/ /dkl/dk W k,m) m)) - <\/w(k,n]j;]f;w(klam)>)

<[ (K, m)e® — ot (k!, m)eike } ' [ (ku,m)e—ik':p _aT(kll’m)eik’:p]>>

m? 1
+(— [ dk' [ dkY
(87r / Vw(k,m)y/w(k',m)
X [a(k:l, m)e”* 4 ol (!, m)eikﬂ ) [a(k;l’,m)e_ik,m + aT(kl’,m)eik%])) ,

we can use the relations, [ dz! e "F+0)-e = (27)e=2t5 (k1 +kY) and [ dat e '*'R)w =
(2m)d(k' — k). then do the [ dz! integration,

- 1 : : [Ry¥
P _S_W/dk /dk <<—\/w(k,m)\/w(k,m)— N k,m)\/w(/f’,m)>
< ([atk!, ma(k” . m)(2

me
— [a(k!, m)a’ (K", m)(2m)5 <kz1 )
— [al (K m)a(k™,m) (2m)3(K” — k)
[ T, > f(k 1,m><2w> Wé(kwk“)])

k! / dk" b \/w —
([ (K", m)a(k", m)(2m)e”25(k" + k)]
+ [a(k", m)al (K™, m)(2m)5 (k! — k)]
+ [al (K, m)a(K",m)(2m)5(k" — k"))
+ [af (k' m)al (K, m)(2m)e 206 (k! + k“)]))) ,

21wt6<k1 4 ]{?1/)}

then do the [ dk' integration, (use, w? = k* 4+ m? — w = ’L—Q + %2)

) 0
— [ dar? Wg/')( la(k',m)a(—k", m)(2m)e "]
a'(k*,m)a' (— '

+ ((w ¥ ?> ([a(kl, m)a' (k', m)(2n)]
+ [al (6 m)a(k!, m)2m)] ) )|
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PY = %/dk’%u( (a(k',m)a’(k',m)) + (aT(k‘l,m)a(k’l,m)D ,
= %/dk%u( (a(k', m)a’ (K", m)) + 2 (a'(K', m)a(k',m)) — (af(kl,m)a(kl,m))) ,
1 00 ; (Only energy difference matters!)
= /dk1 w (a'(k',m)a(k',m)) + = Lw3(0) ,
P'=H= /dkl w (a'(k',m)a(k',m))|. (2.108)
Now, the Momentum (P') will be,
P = /dxl T = /dx1 (0°¢0'¢) = /dx1 (m(2)0'¢(2)) (2.109)

then

p :/dxl (—%/dkl/dk“\/m\/%

X [a(kl,m)e_iklw — aT(k:,m)eikx} ) [a(kll,m)e‘ikl/z — aT(k:’,m)eiklx} ) ,

X ([a(kl, m)a(k", m)e ™ 5(k' + k)] + [a' (K", m)a’ (K", m)et*™'5(k" + k)]

— [a(k, m)at (K, m)s(k* — k)] — [at (k" m)a(k’, m)o (k" — kl)D ,
0 ; (because the [ dk' (k') x (even function) = 0)

P! :% dk* k‘l)<[a(k51,m)a(—k1,m)e_%m] + [aT(k’l,m)aT(—kl,m)e“i‘”t])
+% / dk! (k1)<[a(k1 m)a’ (k' m)] + [a'(k*, m)a(k! m)})
p! :%/dkl (k1)< (a(k',m)al (k' m)) + (aT(kl,m)a(kl,m)) ,
:%/dkl (k1)<(a(k:1,m)aT(k1,m)) +2 (al (k' m)a(k',m)) — (aT(kl,m)a(kl,m))> ,
. 0 ; (because (k' x §(0)) is odd)
:/alk1 (k") (a' (K", m)a(k',m)) + = | dk* 9(0)
P! = /dkl (k") (a'(k', m)a(k',m)) |. (2.110)
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Let’s fine the Equal-2° Commutation,

[P, P! = /dkl/dk’l w k’l[(aT(kl,m)a(kl,m)) , (aT(/{’l,m)a(k'l,m))} ,
- / k! / Ak w K <aT(k’1,m) [aT(kl,m),a(k/l,m)}a(/&,m)

- / di! / k't w k" (af(k'l,m) [ . kl)} a(k,m)
+at (', m) [5(1& - k’l)}a(kﬂ, m))

= /dkl w k' (=a' (K", m)a(k',m) + o' (K, m)a(k',m)) =0,

[P°,P'] =0/,

[P* P =0] v . (2.111)

The Boost operator (K*') will be,
10— /dxl (29T — 17%)
L=t P — /d:vl (z'T™) | (2.112)

to evaluate [ dx! ('), let’s find the space-time evaluation of a(k') in Heisenberg’s

Picture. [10]

a(]{;l,xu) ZP#z“ (k’l 0) —iPyxH 7

a(kl’xl) — oiPrat a<kl’0)€fiP1.a:1 :

0 . , '
%a(kl,xl) — ZPl 62P1-x1a<k170)671131.g:1 . zPl ! (kl O) /lpl e*lPLl“l 7

0

ookt at) = e [Pa(kt 0)] e = ik e a(k?, 007 = —ik a(k',2”) |

— a(k',2') = e ™" a(k',0)
— a(k',0) = e (kY 1Y) = e T (k! 2 |

0 —_—
— ——a(k',0) = iz! T (k) 2') = izt a(k',0),
Oky

we found that [ dz'T® = [ dk' w (al(k', m)a(k',m)) , so

/d:zcl (z'T) = —i/dkl w (aT(kfl,m)aikla(kl,m)) : (2.113)
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then,

L% =t P'— /dxl (z'T%)

L% =t pt —|—i/dk1 w (aT(kl,m)

9
8_k:1a(k »m)) ,

0
0 _ . 1 T(E! —_
L Z/dk w(a (k ’m>8k1a

%Hm)—t#,

at 2° =0,

0

o _ 1 tepl oy 9
L —z/dk w(a (k ,m)akla(k ,m))

LY = —z'/dk:1 w (aT(k’l,m)a—kla

0

(m)

L (k)] =i [ dkt Kaf(kl’,m)a%a(k“,m)) ,a(kl)}

i / dk" o' Kcﬁ(i&’, m)

= iw’/dkl'aT(kll,m)

L%, a" (k)]

(L%, a¥ (k"))

9
oK,

zwakla (k*,m).

—a
ok,

0

(kam) ) (i)

5(k1 . kl/) ’

Now, the commutation relation between J°' and P* will be

p%pﬂ:/ﬁpwuﬁg4m@umawmm},

:/dkl w (al(k',m) [(JO) ,a(k',m)] + [(J*) ,al (K", m)] a(k',m)) |

0
_ s 1
= z/dk ww—akl

= —i/dklw (EaT(kl)a(k:l)
w
(L™, P = —i P'| v,
(L, P =—i P’ v,

|:L>\0"P,LL:| -4 (go,up)\ . g/\,upcr)

0

Oow
1 [
dk” w ok,

(2.114)

(2.115)

(2.116)

(2.117)

= —iw——a(k',m) ,

Oky

(2.118)

—z'/dkl W w (aT(k;l,m) (a—kla(l{l,m)) + (%cﬂ(lﬁl,mo a(k;l,m)) :
(@' myati,m) =

(aT(kl, m)a(k', m)) ,

) — —z‘/dklkr (af(k)a(k")) = —i P*

(2.119)
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Chapter 3

Light-Front Dynamics

“ Working with a front is a process that is unfamiliar to physicists. But still I feel
that the mathematical simplification that it introduces is all-important. I consider
the method to be promising and have recently been making an extensive study of
it. It offers new opportunities, while the familiar instant form seems to be played
out ” - P.A.M. Dirac (1977)

According to Dirac [11] “ ... the three-dimensional surface in space-time formed
by a plane wave front advancing with the velocity of light. Such a surface will
be called front for brevity”. An example of a light-front is given by the equation

xt=2"+23=0.

3.1 Light-Front Dynamics: Definition

A dynamical system is characterized by ten fundamental quantities: energy, mo-
mentum, angular momentum, and boost. In the conventional Hamiltonian form
of dynamics one works with dynamical variables referring to physical conditions at
some instant of time, the simplest instant being given by z° = 0. Dirac found that
other forms of relativistic dynamics are possible. For example, one may set up a
dynamical theory in which the dynamical variables refer to physical conditions on
a front 2 = 0. The resulting dynamics is called light-front dynamics, which Dirac
called front-form for brevity. [12]

2042t 20—zt

The variables 7 = 7 and 7 = 7 are called light-front time and longi-

tudinal space variables respectively. Transverse variable z+ = (x!, z?).
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We denote the four-vector z# by

ot = (2% 2t 2 2%) = (2% 2t 27) .

Scalar product

ry = 2%° — oty — 2Py

Define light-front variables

n 20 4 2! T —x
g N g

V2 V2

Let us denote the four-vector x* by

T

+,xL,x_) )

= (z

Scalar product

The metric tensor is

0O 0 0 1
0O -1 0 0
9" = ;
0O 0 -1 0
1 0 0 0
0 0 0 1
0 -1 0 0
Guv =
0O 0 -1 0
1 0 0 0
Thus
r_=a", xp=a
Partial derivatives:
0
ot =0_=—.
ox—
0
9 -9, — 2
T ot

(3.1)

(3.2)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)



3.1.1 Dispersion Relation

In analogy with the light-front space-time variables, we define the longitudinal mo-
mentum kT = k% + k2 and light-front energy k= = k° — k3.
For a free massive particle k? = m? leads to k* > 0 and the dispersion relation

_ kL)24m?
o =

The above dispersion relation is quite remarkable for the following reasons: (1)
Even though we have a relativistic dispersion relation, there is no square root factor.
(2) The dependence of the energy k= on the transverse momentum k= is just like in
the nonrelativistic dispersion relation. (3) For k™ positive (negative), k™ is positive
(negative). This fact has several interesting consequences. (4) The dependence of
energy on k*+ and kT is multiplicative and large energy can result from large k+

and/or small k7.

3.2 Scalar Field

The Lagrangian density expressed in light-front variables is [12]
=0 0" ¢ — %aigba% — %M%Q , (3.11)
The equation of motion is
(20707 — (0°)* + ] ¢ =0. (3.12)

The quantized free scalar field can be written as

dk; d?k+
o(x)
\/ 27T 0+ 2]€+

The commutators are

[a(k)e™™" + al (k) e*] | (3.13)

[alk).at (k)] = 8k — &),
[a(k), a(k)] = [al (K),a' (k)] = 0. (3.14)

3.3 Poincare Generators and Algebra

3.3.1 Lorentz Group

Let us first consider a pure boost along the negative 3-axis. The relationship between

space and time of two systems of coordinates, one S in uniform motion along the
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negative 3-axis with speed v relative to other S is given by 7° = ~(z" + Ba?),
=3 _ 3 0) i _ v _ 1

T° = (2’ + pz”), with = ¥ and v S Introduce the parameter ¢ such that
v = cosh ¢, 5y = sinh ¢. In terms of the light-front variables, [12]

it =Pt i =e %2, (3.15)

Thus boost along the 3-axis becomes a scale transformation for the variables 7+ and
27 and 27 = 0 is invariant under boost along the 3-axis.

Let us denote the three generators of boosts by K* and the three generators of
rotations by J? in equal-time dynamics. Define E! = —K! + J?, E? = —K? — J!,
F'= —K!'— J? and F? = —K? + J'. The explicit expressions for the 6 generators

K3, E', E%, J3, F!', and F? in the finite dimensional representation are

0 001 0 -1 0 O
., |oooo 1 1 0 0 -1
K°=—i , E =—i , (3.16)
0000 0 0 0 O
1 000 0 1 0 O
0 0 -1 0 0 0 00
, oo o0 o ., oo 10
E* = —i , J0=—i : (3.17)
-1 0 0 -1 0 -1 0 0
0 0 1 0 0 0 0O
0 -1 0 0 0 0 -1 0
1 1 0 01 , 0 0 0 0
F'=—i : F*=—i (3.18)
0 0 00 -1 0 0 1
0 -1 00 0 0 -1 0

Note that K3, B, E?, and J? leave 2z = 0 invariant and are kinematical generators
while F'! and F? do not and are dynamical generators.

It follows that
[F', F? =0,[J* F'] =iV FY. (3.19)
Thus J3, F! and F? form a closed algebra. Also
[E', E?] =0, [K* E'] =iE". (3.20)
Thus K3, E' and E? also form a closed algebra.
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3.3.2 Algebra

From the Lagrangian density one may construct the stress tensor 7" and from the
stress tensor one may construct a four-momentum P* and a generalized angular

momentum L. [12,13]

Pt = /dxd%i T, (3.21)

LH = /dx_deL[x” TH — gt T, (3.22)

Note that L* is antisymmetric and hence has six independent components. Poincare

algebra in terms of P* and L* is

[P*, P"] =0, (3.23)
[P*, L] = i[g"* P7 — ¢"° PP], (3.24)
(LM, LP7) = i[—g"P LY + gh LYP — g*" LI + g"P L], (3.25)

In light-front dynamics P~ is the Hamiltonian and P* and P’ (i = 1,2) are the

momenta. L~ = K2 and LT = E* are the boosts. L'? = J? and L~ = F? are the

rotations.

3.3.3 Example: Klein—Gordon (1+1)

The Boost operator (L) will be, [13]
Lt = /dx (FTH — a7 TH)

LT =a"P — /dx_ (z7T%) (3.26)
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to evaluate [dx~ (z~T71), let’s find the space-time evaluation of a(k™) in Heisen-

berg’s Picture. [10]

a(k™
a(k™

0

—a(k™

oxr—

oxr—

= a(k™

at) = et o (k, 0)e "
,x*) — eiP_.x*a(kfj O)efiP_.x* ’

cx7) = [iP_ e a(k™,0)e "] —

= —ik_ " a(k™,0)e " = —ik_a(k™,27)

,7) = e a(kT,0)

— a(k™,0) =e**"a(k™,27),

(e a(k™,0) iP_ e "]

Jx7) = ie T [P,,a(k’,())} e~iP- ! ,

— ia(k:_,O) =iz~ e* " a(k™,27) =iz” a(k,0),

Ok_

we found that [dz~T*F = [dk™ k¥ (a’(k~,m)a(k™,m)) , so

/ dr (x TH) = —i / dk- K (aT(k_,m)%a(k‘_,m)) ,

then,

at ™

LT =a2tP — /dx_ (z7T*F)

LT =a2tP~ —|—z'/dk‘_ kTt (aT(k_,m)—a(k;_,m)> ,

L= / di K (aT(k’_,m)ia(k_,m)) P

Ok_

=0,

0
Ok_

Lt = z’/dk‘ kT (a*(k‘,m)%a(k‘,m))

L= —i/dk k* <aT(k,m)a%a

o)
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let’s find,

(LT a(k7)] :i/dk" k! [(aT(k_’,m)a(Z,_a(k_/,m)> ,a(k;_)} :
(L4 a(k")] = —ik* o a(k™,m)

L al (k)] = i / " K Kaf(k',m) ai,_a(kﬂ,m)> ,aT(k;)] |
0
ok

= ¢k+'/dk—’af(k—',m) Sk~ — k'),

(LT al (k7)) = —zk*a%a (k=,m) .

01
Now, the commutation relation between J*~ and P* will be, (use, g = ( ) =
10

Guv)

(L, P = / k= (L), (6 al (b, m)a(k—,m)]

= /dk kT k+a(z (a'(k™,m)a(k™,m)) = z’/dk lﬁ% (a'(k™,m)a(k™,m))

/dk k+g’;( k™, m)a(k—,m)) =i /dk K (af (k7 )a(k)) =i P
(L, P =i P*] v,
(L. P = / ak (L) (k af (k™ ma(k™,m))]
= [an (e m) [(27) k)] + (25 sl )] otk )
—z’/dkk*k( (k™ [—ak m1+{£ f(k } (k,m)> :
/dk i+ k‘a(z (al (k= m)a(k™ ,m)):z/dk: /ﬁg’;;( (k= m)a(k™,m))
_ /dk‘g%k (af (k™ m)a(k™ m)):—i/dk‘k‘ (a"(k )a(k™)) = —i P,

LT, P ]=—=iP | vV,

(LA, P*] =i (¢7" P — g™ P7)| v . (3.32)
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Chapter 4

Interpolation between IFD and

LFD

In this chapter, we will define the initial surface to interpolate from z° = 0 to
2% + 2! = 0. The angle which the initial or quantization surface makes relative
to 2° = 0 will be left as a parameter. Lorentz-invariant quantities such as masses
must in the end be independent of this angle, while in intermediate stages this angle
may be chosen for convenience. This Interpolation method was first introduced by
Kent Hornbostel in 1992 [14]. Then Chueng-Ryong Ji [15-20] pioneered the idea of
connecting the instant form dynamics and the light-front dynamics and contributed

to utilizing the light cone in solving relativistic bound state and scattering problems.

4.1 Method of Interpolation Angle

In this section, we briefly review the interpolation angle method. To trace the forms
of relativistic quantum field theory between IFD and LFD, we take the following
convention of the space-time coordinates to define the interpolation angle [14-20].

The interpolating space-time coordinates may be defined as a transformation from

v

the ordinary space-time coordinates, z# = R" x¥, i.e.
s cosd 0 0 sind 20
al 0 10 0 a!
| = , (4.1)
x? 0 01 0 x?
x~ sind 0 0 —cosd/ \a2*
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in which the interpolation angle is allowed to run from 0 through 45°, 0 < ¢ < 7.

In this interpolating basis, the metric becomes

cC o 0 S

- 0 -1 0 ©

9" = g = 0 o Lo | (4.2)
S 0 0 -C

where S = sin 20 and C = cos 26. The covariant interpolating space-time coordinates

are then easily obtained as

T cosd 0 0 —sind T

i
5 T3 0 -1 0 0 !
T3 0o 0 -1 0 2
€T - sind 0 0 cos o 3

The lower index variables x, and z_ are related to the upper index variables as
4 = gpu2” = Cat + Sz~ and v = g_ 2" = —Cx~ + Sz, denoting C = cos2d and
S = sin2§ and realizing g, = —¢g__ = cos20 = C and g, = g_; =sin2§ = S. All
the indices with the wide-hat notation signify the variables with the interpolation
angle 6. For the limit § — 0 we have 27 = 2° and 2= = —23 so that we recover usual
space-time coordinates although the z-axis is inverted while for the other extreme
limit, § — % we have 2+ = (2°£2%)/v/2 = 2% which leads to the standard light-front
coordinates. Since the perpendicular components remain the same (:Uj =2l z: =

]

(13005

z;,j = 1,2), we will omit the notation unless necessary from now on for the
perpendicular indices 7 = 1,2 in a four-vector. Of course, the same interpolation
applies to the four-momentum variables too as it applies to all four-vectors.

The same transformations also apply to the momentum: [16]

P+ = P%cosd + P?sin g, (4.4a)
P~ = P%sind — P?cosé, (4.4b)
P. = P’cosd — P?sin, (4.4c)
P- = P’sin§ + P? cos 6. (4.4d)

Since the perpendicular components remain the same (aj =a, a; =aj,j =1, 2),

[13a0)

we will omit the notation unless necessary from now on for the perpendicular

indices j = 1,2 in a four-vector.
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Using ¢g"” and gy, we see that the covariant and contravariant components are

related by
a;r:(Caj“—kSa;; aj“:(Cajr—FSa;
a- :Sajr—(Cal; a” = Sa; — Ca-

a;=—d, (j=1,2).

(4.5)

The inner product of two four-vectors must be interpolation angle independent

as one can verify

a[‘bﬂ = (a_;_b_;_ — a;b;)(C + (a_]_b; + a;b_;_)S — a11)1 — a2b2

— b
= a"b,.

In particular, we have the energy-momentum dispersion relation given by

PP, = P3C — P2C+2P; P-S — P7.

4.2 Poincaré Matrix

The Poincaré matrix [15,16]
0 K' K? K3
-K* 0 B -J

L = ,
~K?* —J 0 g

~K3 2 g0

transforms as well, so that

L = RELYRG =

and

L[Lﬁ = gﬂdeﬂgﬁﬁ —

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)



where

Ei:J2Sin5+K1COS(5, lCi:—Klsin(S—JQcosé,
EQ:KQCOS(S—JlSin(S, ICQ:chOS(S—KQSincS,

F' = K'sind — J? cosd, Dl = —K'cosé + J?sin,

F? = K?sin§ + J' cos d, D> = —J'sind — K cosd. (4.11)

The interpolating E? and F? will coincide with the usual E9 and F¥ of LFD in the
limit § = w/4. Note here that the “*” notation is reinstated for 1,2 to emphasize
the angle 0 dependence and that the position of the indices on K, J, E, F, D, IC won’t
matter as they are not the four-vectors: i.e. E; = Ei, etc. Of course, L* and L,

should be distinguished in any case.

4.3 Interpolating Poincaré Algebra

In this interpolating basis, the metric becomes

CcC o 0 S

- 0 -1 0 0

9" = g = _ Lo I (4.12)
S 0 0 -C

The Poincaré algebra (Contra-variant form) in this interpolating basis is given by

[PF, P"] =0,
[pﬁ’ Lﬁu?] — (gﬁﬂpﬁ _ gﬁﬁpﬂ) ,

L8, 17| = i (g7 L% — gL 4 oL - oo o). (4.13)

A comprehensive list of the 45 commutation relations among the contra-variant and

co-variant components of the Poincare” generators is presented below: [15]

Poincaré algebra: Contra-variant form

1) [P*,P"] =0
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P are the Energy and Momenta.

PP =0,
_P*,PQ] —0,
'P*,Pl} —0,
-Pi,PQ] ~0,
_PL,Pi] ~0,
PP =0,

2) [pﬁ’ qu?} = (gp”ﬂpﬁ _ gﬁﬁpﬂ)

L™ are the Angular Momenta. (Where, L=t = K3 is the Boost, LY = E' are
the Transverse Boosts |, L2 = J3 i the Rotation, L~" = F' are the Transverse
Rotations).

'P*,Lﬂ — [P*,Kﬂ —i (ﬁip* . g*ﬂf) — (SP* . CP;> —iP-

[ p+ Lﬁ} _ [P4 Ei} _ .<g;4pi _gﬁP;) — ;CP!
[ p+ Lm} _ [lﬁ Ei} _ .<g+4pé _g4ﬁp4> _iCP?
[ p+ Lié] _ [P4 Jg} _ ~<gﬁripi_gﬁrépi> —0

PHLY = [PR P =i (gt P - gt P ) —isP

P
Pt 2] = [PF PP Z-<gﬁripi _gt2p°
P

:O’

)
) =isP*
)

'Pi’L;# _ 'Ping' :i(gi:P4 _ gt

PP = [P B = (gl+P1 — 911P+> —iP* =i (CP; +SP-)

pi 2] = [pl B2 :Z-<gi$P§_giQPQL> —0,
_Pi’LiQ] _ [pi’l]?,} :Z-<giipé _ngi) — P

Pl = [P R = (gqiipi _4iip ) —iP~ =i(SP; —CP-)

PLLR| = [PL R =i (g P - g2PT) =0,

-PQ7L;-I-i| — [PQ,KQ] =3 (92

'P27L;i] _ [PQ,Ei] _ -(QQQLPi _gﬁip%> —0,

Pj“—géer;) —0,
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:PQ,L”] _ [PQ’EQ} :i(géipé_gQéPJ“r) _ipF —i(CP; +SP-) |,
:PéaLié} _ [Pi”]é] _ -(giipé_géépi) —ipl

'PéjL;i] _ [P§7Fi} :Z-<géipi_géipi —0,

3) { 198, Lﬁ&} - (QB& Lo — gPPLas | gan[Bo _ gao LBﬁ)
L™ are the Angular Momenta. (Where, L=+ = K3 is the Boost, LY = E' are
the Transverse Boosts |, L2 = J3 i the Rotation, L~" = F' are the Transverse

Rotations).

'L#,Lﬁ] _ [Ké’Ei] — (g“Li* e Ay s _g;iL#) —iCF' —iSE!

_L;*,L*Q] _ [K:;,E@] s (QML;; gt P _gzéLﬁ) — iCF? _iSE? |
:Liﬁr,Lié} _ [K37J3] _ <g+ﬁL;1 L i _giiL{Li> _o.

Vs Lli] - [Kg,Fi} S, (gj“i[f: e ey giiL*;> — iSF! +iCE"
L] = (KPR = i (97T - gL gL g = iSF 4 iCE?
:Lﬁ’Lm' (5B = <91@L44 LRy g _gan) _ich

L 12| = (B P = i (9207 = gL gt LR - P ) < i,

Lt = (B R = (Qﬁﬁ; e e S S e

~
I

_L'i‘i, LLQ_ = _Ei, Fﬁ_ = — <giiL4_i - giLL—PQ + quLLiQ - g—T_éLiL = _Zgjg )

N———

LA A R o e e A e A A e ) Vo
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I+ L;i] - [EQ,Fi} = — (gQiL*; — LT gL - gﬁLQ;> = iSJ3,

72, L;Q] = [EQ, Fé} = (92%4; — L 4 gL — gL ) = KR

N——

L2 L) =[PP =i (60 = g L g ) =i

L2172 = [P = =i (g2 = g LR g L2 g2 ) — i

DL = [FL P =i (020 - g L g L - g ) =i
Poincaré algebra: Co-variant form
1>[P[M Pﬁ] =0
P are the Energy and Momenta.
[Pjr’ Pi] =0,
[P-T—v Pﬁ] =0,
[Py, P-]=0,
[Pi? PQ] =0,
[Pi’ Pi] =0,
[P-,P;] =0.
2) (B, Lio] = i (9pnPo — 90 )
Ly are the Angular Momenta. (Where, L~ = —L-; = Kg,Ljr% = D =

~SF' —CE', Ly = J?, and L-; = K = CF' — SEY).

[Py, Ly-] = [Pﬁr,K?)_ =i(g34P- —g93-Py)=1(CP. —SPy) ,

[Pr L] = [P%Di_ =i(9:+P1 — 931P3) =iCP;

[Py Lya] = [P 1 D?| =i (934 Py — 935P;) = iCPy |
[Py, Lis] = [P%J?’] =1i(91iP — 935P1) =0,
[P, Log] = [Po K| =i (032 P1 — g31P2) = iSP;

[Pﬁrv Lii] B [PJH ’CQ} =1 (9;;]3@ - gerP;) =1iSP;

38



[P, L] = [Pi, K| =i (g1 P= = 91-P;) =0,

[PiLyi] = _PiaDi_ =i(9i1 P — 911 Py) = iPy

[P, L) = :Pp DQ:

i (9115 — 913P3) =0,
[Pi, Lis] = [Pp J?’} =i (9115 — gisPy) = —iDs

[PioLey] = [P =i (g2 Py = 911 P2) = iP- .

[Pp, L-s) = :PiJCQ: =i(g1=P — g12P-) =0,

(

[P, Ly = [Pga K3 =i(gs2 P~ —g5-P1) =0,
[P, L] = [Piapi: =i(g21 P —951P;) =0,
[Py, Lys] = [Péapé: =i (933P — g Py) =Py |

[P, Lis] = [P@J?’} =i (92155 = 95P1) = iPy

|P-,L;-] = [P;,Kg_ =i(g-4 P> —g--Py)=1i(SP-+CPy) ,
[P, L] = [P—Dl: =i(924P; — g21P1) =iSP; ,
[P-.L.;] = [P;,Dé_ —i(g-3 P, — g-4P;) = iSP,

[L-q, L] = - [K“”’,Dl} = —i(g93iL2g —933L-1 +9-3L31 — g21L1z) = iCK' —iSD'
[L;_]_, L_;_Q] = — [K?’,'Dﬂ =—1 (g_;QL;_;_ —giilos+9-1L55 — g;QL_H_) = iCK? —iSD?
[Los, Lig) = = [K?’, J3] = —i(g35L-1 — 931025+ 9-1L35 — 925L11) =0 , |

Loy, L] =— [Kg, /Ci} = —i(939Lo2 —gi-Loj+g-2Lyg—g-3L2) = iSK! +iCD" |
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Lo Leg) == [K4 K =
1 i

L

ot ]

_Di’ ;C?_

o

L-;, L;Q} = [/Ci, /CQ]

4.4 Comprehensive Table

= —i(91sL31 — 9i3 Lys + 931 Lis — 935L43)

[

(L33, L

(L4, L

(L1, L

(L34, L

[Lia Lis) = D% 7% = =i (9saLsi — gailas + 031Las — 93aLar) = D',
(L5, L

(L5, L

[Lis, L

[ = [ng ’Cé] = —i(93aLi= = 95-Lis + 91~ Ly — 913L5-)
[

= —i(gisL1i — giiLys + 931Lis — 915L11) = —iD?

= —iK!,

= —iCJ?,

—i(g11L32 —gi-Lyi +93-Lis — 911Li-) = =K,

= —i(913L3= = 9i-Lys + 93-Lis — g35L4-) = —iST*

—i(955L32 = 9o-Lis + 932 Loy — gials-) = —iK*

= —i(gipLoz — g1 Loy +9-2Liy — g-5L-) = iCJ* .

The following tables summarizes the commutation relations between the Poincare

generators in Interpolation form.

4.4.1 Contra-variant form

—i(935L-2 —gioLos+gooLis—gosly-) = iSK? +iCD?

Pt Pl P2 K3 El E? J3 Fl P2 P~
Pt 0 0 0 iP- iCP! iCP? 0 iSP iSP? 0
P! 0 0 0 0 iCP; +iSP- 0 —iP* | iSP; —iCP- 0 0
P? 0 0 0 0 0 iCP; +iSP- | iP! 0 iSP; —iCP- | 0
K% | —iP- 0 0 0 iCF' —iSE' | iCF* —iSE? | 0 | iSF'+iCE! |iSF?+iCE®| iP;
El | —iCP' | —iCP; —iSP- 0 —iCF' +iSE! 0 —iCJ? | —iE? —iK? —iSJ?3 —iSP!
E? | —iCP? 0 ~iCP; —iSP- | —iCF? +iSE? iCcJ? 0 iE! iS.J? —iK? —iSP?
J3 0 iP? —ipP! 0 iB? —iE! 0 iF? —iF! 0
Fi | —isP! | —iSP, +iCP- 0 —iSF! —iCE! QK3 —iSJ?3 —iF? 0 iC.J? icp!
F? | —isp? 0 —iSP; +iCP- | —iSF? — iCE? iSJ i iF! —iCJ?3 0 iCP?
P~ 0 0 0 —iP; iSP! iSP? 0 —iCP! —iCP? 0

Where, the P* are Energy and Momenta (P™ = (CP; +SP-), Pi=—-p P =
(SP; — CP-)), the L* are Angular Momenta. (here, L~+ = K3 is Boost, Lt = F'

are Transverse Boosts , L'? = J3 is Rotation, L™" = F are Transverse Rotations).
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4.4.2 Co-variant form

P; P | P K3 Dl D? J? Kt K P-
Py 0 0 0 |i(CP.—SPy) iCP; iCP; 0 iSP; iSP, 0
P, 0 0 0 0 iP; 0 —iP, iP- 0 0
P 0 0 0 0 0 iP; iP 0 iP- 0
K3 | —i(CP-—SP;)| © 0 0 iSD! —iCK! | iSD2—iCK2 | 0 | —iSK! —iCD! | —iSK2 —iCD? | —i (SP- + CP;)
Dl —iCP; —iP; | 0 | —iSD! +iCK! 0 —iCJ® | —iD? —iK? —iSJ? —iSP;
D? —iCP, 0 | —iP; | —iSD? +iCK? icJ? 0 iD! iSJ —iK? —iSP,
J? 0 iPy | —iP; 0 iD? —iD! 0 iK? —iK! 0
Kt —iSP; —iP- | 0 | iSK'+iCD! iRk —iSJ? —ik? 0 iCJ3 iCP,
K2 —iSP; 0 | —iP- | iSK?+iCD? iSJ if® iK1 —iCJ? 0 iCP,
P- 0 0 0 |i(SP-+CPy) iSP; iSP, 0 —iCP; —iCP; 0
(Where, L4; = —L;jr = Kg,L%% = 'Di = —SFi — CEi, Liﬁ = J3, and L;% = ’CZ =
CFi — SEY).

Among the ten Poincaré generators, the six generators (ICi, ICQ, J3, P, Py, P-) are
always kinematic in the sense that the z+ = 0 plane is intact under the transfor-
mations generated by them. The operator K* = M- is dynamical in the region
where 0 < § < 7/4 but becomes kinematic in the light-front limit (6 = 7/4). The

set of kinematic and dynamic generators depending on the interpolation angle are

summarized in following table. [15,16]

Interpolation angle Kinematic Dynamic

§=0 Kl=—J2 K2 =J', J3 P!, P2 p3 Dl = —K! D2 = —K2 K3 PO
0<d<m/4 Kl K2, g3, Pt P2, P D! D* K3 P;
s=m/4 Kl=_—E' K= —F? J3 K3, P\, P2, Pt Dl=_F D= _F2 pP-

4.4.3 Contra-variant form (IFD)

The following table summarizes the commutation relations (contra-variant form)
between the Poincare generators explicitly in Instant Form Dynamics (IFD) (when

interpolation angle, § = 0),
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PO Pl P2 _K3 K1 K2 J3 J? _Jt p3
P? 0 0 0 iPy | iP' | iP? 0 0 0 0
P! 0 0 0 0 iPy 0 | —iP?| —iPs| 0 0
P? 0 0 0 0 0 iPy | iP? 0 | —iPs| 0

~K3| —iPy| 0 0 0 iJ> | —iJV |0 iK' | iK? | P,
K' | —iP'| —iRy| O —iJ? 0 —iJ3 | —iK? | iK? 0 0
K? | —iP*>| 0 | —iPy | iJ' | iJ? 0 iK? 0 iK? | 0
J? 0 iP? | —iP'| 0 iK? | iK' 0 | —iJ'| —iJ?| 0
J? 0 iPs 0 | —iK'| —iK?| 0 iJ! 0 iJ® | iP!

-J' | 0 0 | +iPy | —iK?| 0 | —iK®| iJ> | —iJ®| 0 |iP?
P3 0 0 0 | —iPy | 0 0 0 | —iP'| —iP?| 0

4.4.4 Contra-variant form (LFD)

The following table summarizes the commutation relations (contra-variant form)
between the Poincare generators explicitly in Light-Front Dynamics (LFD) (when

interpolation angle, § = %)’

pt | P | P2 | K*| B B | F | F2 | P

Pt 0 0 0 1P 0 0 0 iP! iP? 0
Pl 0 0 0 0 1P_ 0 —iP? | P, 0

P? 0 0 0 0 0 1P iP! 0 1Py 0
K3 | —iP_ 0 0 0 —iE' | —iE? 0 iFt iF? 1Py
E! 0 —iP_ 0 iB! 0 0 —iE? | —iK3 | —iJ® | —iP!
E? 0 0 —iP_ | iE? 0 0 iE! iJ3 | —iK3 | —iP?

J3 0 iP? | —iP? 0 iE* | —iE! 0 iF? | —iF! 0

F' | —iP' | —iP, 0 —iF | K | —iJ? | —iF? 0 0 0
F? | —iP? 0 —iPy | —iF? | iJ3 iK? | iRt 0 0 0
P~ 0 0 0 —iP, | iP! iP? 0 0 0 0

4.4.5 Co-variant form (IFD)

The following table summarizes the commutation relations (co-variant form) be-
tween the Poincare generators explicitly in Instant Form Dynamics (IFD) (when

interpolation angle, § = 0),
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P | P | P | K| -K'| K> | -2 | P
P | 0 0 0 | iPy | P | iP, | 0 0 0 0
P 0 0 0 0 iPy | 0 | —iP | iP 0 0
P 0 0 0 0 0 | Py | iP 0 iPy |0
K3 | —iPy| 0 0 0 iJ: | =gt 0 | iK' | iK? | —iP,
—K'| —iP | —iPy| O | —iJ%2| 0 | —iJ3| iK? | —iK3| 0 0
—K2| —iP| 0 | —iPy| iJ' | i3 | 0 | —iK'| 0 |—iK3| 0
JL 0 | P | =ik | 0 | —iK2| iK' | 0 iJU | i | o
—J2 | 0 | —iPy| 0 | —iK'| iK3® | 0 | —iJ'| 0 iJ | P
J! 0 0 | —iPy | —iK2| 0 | iK3 | —iJ? | —iJ3 | 0 | iP,
P | 0 0 0 | iP | 0 i0 0 | —iP, | —iP, | 0

4.4.6 Co-variant form (LFD)

The following table summarizes the commutation relations (co-variant form) be-
tween the Poincare generators explicitly in Light-Front Dynamics (LFD) (when in-

terpolation angle, 6 = 1),

P, P P K3 —Fl | —F? J3 —E' | —F? P
P, 0 0 0 —iPy 0 0 0 1Py 1Py 0
P 0 0 0 0 Py 0 —iPy | iP_ 0 0
P 0 0 0 0 0 PPy 1Py 0 iP_ 0
K3 | iP, 0 0 0 —iFt | —iF? ] 0 iE' | iE? | —iP_
—Ft 0 —1Py 0 iF! 0 0 iF? | —iK3 | —iJ3 | —iP,
_F2| 0 0 |—iP | iF2 | 0 0 | —iF'| i | —iK? | —iP
J3 0 1Py —iPy 0 —iF? | R 0 —iE? | B! 0
B —iP | —iP_ 0 —iE | K3 | —iJ3 | iE? 0 0 0
—E? | —iP, 0 —iP_ | —iE% | iJ3 iK3 | —iF! 0 0 0
P 0 0 0 P 1P 1Py 0 0 0 0
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Chapter 5

Extension to Conformal Group

The set of conformal transformations manifestly forms a group, and it obviously has
the Poincaré group as a subgroup. We start by introducing conformal transforma-
tions and determining the condition for conformal invariance. Next, we are going to

consider flat space in d > 3 dimensions and identify the conformal group. [5,21-24]

5.1 Conformal Transformations

Let us consider a flat space in d dimensions and transformations thereof which
locally preserve the angle between any two lines. A map ¢ is called a conformal
transformation, if the metric tensor satisfies ¢ x ¢ = Fg. Denoting 2’ = ¢(z), we

can express this condition in the following way: [5,21-24]

, . .\ 0x'P0x'?
gpa'(x )@ axl, = F<x)g,lLV(x)7 (51)

where the positive function F'(z) is called the scale factor and Einstein’s sum con-
vention is understood.We will always consider flat spaces with a constant metric
of the form 7, = diag(1,...,+1,...). In this case, the condition for a conformal

transformation can be written as

0x'? 0’7
Upa@ﬁ = F(z)nu | (5.2)
Note furthermore, for flat spaces the scale factor F'(z) = 1 corresponds to the

Poincaré group consisting of translations and rotations, respectively Lorentz trans-

formations.
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5.2 Conditions for Conformal Invariance

Let us next study infinitesimal coordinate transformations [5, 21, 22] which up to

first order in a small parameter €(z) << 1 read
2P =3P + € (x) + O(2). (5.3)

Noting that €, = n,,€” as well as that 7,, is constant, the left-hand side of Eq.

((5.2)) for such a transformation is determined to be of the followingform:

o' 0x'° Oef folad
— p 2 o 2
oo g v — 7 (5“ * oxH +O(e )> (5” + ox? +0(e )> ’
0e’ Oe”
= nuu + 77;10@ + npl/@ + 0(62) )

B Oe,  Oey 9
= 1+ (55 + 55 ) +O(E).

The question we want to ask now is, under what conditions is the transformation
((5.3)) conformal, i.e. when is Eq. ((5.2)) satisfied? From the last formula we see

that, up to first order in €, we have to demand that
8u6u + aueu = K($)nuu ) (54)

where K(x) is some function. This function can be determined by tracing the

equation above with n*”
n* ((9“6” + éLeM) = K(z)n"nu. ,
20V¢, = K(x)d . (5.5)

Using this expression and solving for K (x), we find the following restriction on the

transformation ((5.3)) to be conformal:

2@ (5.6)

Finally, the scale factor can be read off as F(z) = 1+ 2(d.¢) + O(¢?).

Ouey + Ope, =

5.3 Some Useful Relations

Let us now derive two useful equations for later purpose. First, we modify Eq.

((5.6)) by taking the derivative 0" and summing over v. We then obtain [5,21,22]
v 2 124
0" (Oues +0v6) = 50" (D)
2
0,(0.€) +Oe, = 88”(8.6) : (5.7)
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Furthermore, we take the derivative 9, to find
2
0,0,(0.€) +0d, ¢, = Eﬁuﬁy(a.e) . (5.8)

After interchanging 1 <— v, adding the resulting expression to Eq.((5.8)) and using
Eq.((5.6)) we get

2 4
28,0,(.€) + D(a(a.e)nm,) = ~0,0,(0-€)
— (nu,,m +(d— z)aﬂau) (9.€) = 0. (5.9)
Finally, contracting this equation with n** gives
(d—1)d(0.€) =01 (5.10)

The second expression we want to use later is obtained by taking derivatives 0, of

Eq. ((5.6)) and permuting indices

2

0,0,€0 + Opave, = anwﬁp(a.e),
2

0,0,€, + 0,0,€, = Enpuay(&e),

2
0,0,€, + 0,0,€, = Enl,paﬂ(a.e),

Subtracting then the first line from the sum of the last two leads to

20,0,€, =

(_nuuap + npuaz/ + nup8u>(a'€) : (511)

ISHI

5.4 Conformal Group in d > 3

After having obtained the condition for an infinitesimal transformations to be con-

formal, let us now determine the conformal group in the case of dimension d > 3.

5.4.1 Conformal Transformations and Generators

We note that Eq.((5.10)) implies that (0.€) is at most linear in z#, ie. (0.€) =
A+ B,z" with A and B,, constant. Then it follows that ¢, is at most quadratic in

x” and so we can make the ansatz: [5,21-24]
€, = a, + bux” + cppr’z’ (5.12)
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where ay, b, ¢, << 1 are constants and the latter is symmetric in the last two

indices, i.e. ¢y, = Cupy . We now study the various terms in Eq. ((5.12)) separately

because the constraints for conformal invariance have to be independent of the

position x*.

e The constant term a in Eq. ((5.12)) is not constrained by Eq. ((5.6)). It

describes infinitesimal translations z/* = z* 4 a*, for which the generator is

the momentum operator | P, = —i0,, |.

e In order to study the term of Eq. ((5.12)) which is linear in z, we insert

((5.12)) into the condition ((5.6)) to find

2
bup + b = E<77pgbop>77m~

From this expression, we see that b,, can be split into a symmetric and an

antisymmetric part

bw/ = QM + My,

where m,,, = —m,,,. The symmetric term an€,, describes infinitesimal scale

transformations 2 = (1 4+ «)z* with generator

D = —iz"d,

. The antisym-

metric part my, corresponds to infinitesimal rotations z'* = (6% 4+ m#)x” with

generator being the angular momentum operator

L, =i(x,0, —x,0,) |

e The term of Eq. ((5.12)) at quadratic order in x can be studied by inserting

Eq. ((5.12)) into expression ((5.11)). We then calculate

0.e = b, +2¢, 2’ —
from which we find that
Cuvp = Mupby + Nuwbp — Mpby wit

9,(0.€) = 2¢l,,
1
h b# = aclp)ﬂ'

The resulting transformations are called Special Conformal Transforma-

tions (SCT) and have the following infinitesimal form:

¥ =at 4 2(x.b)zt — (x.2)b" .
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The expression for the full generator [5] (from (2.73)), G,, of a transformation
is

daH oF

iG,® = 9,0 — —

dw,, dw,

(5.14)

For an infinitesimal special conformal transformation (SCT), the coordinates

transform like
' =t + 2(x - b)at — bt (5.15)
If we now suppose the field transforms trivially under a SCT across the entire

space, then (?TF = 0. then,

dat dzt 6(z7b,)

= = 2z, 0" — 2%0H. 5.16
5t~ 3(xrb,)  ob¥ BTG (5.16)

then the Generator for the SCT is,
R, = —1 (2xl,x“(9u — x28,,) . (5.17)

We have now identified the infinitesimal conformal transformations.

5.5 Special Conformal Transformations

We have now explored all possibilities for conformal transformations at the infinites-
imal level. To find the finite transformations, we must exponentiate the different
infinitesimal transformation that we just found. Although this is straightforward in
principle, it can be tedious (in particular for the SCT). The result is [5,21-24]
(translation) — a* =z + " |
(dilation) 2" = az* |
(rotation)  z'* = Mtz |
xH — bHg?

1 —2b-x4b222

Let us also note that for finite Special Conformal Transformations, we can re-write

(SCT) o

the expression as follows [5,21,22]

2 2
W Tt — bHtx B T (2 — b 2)
X T 1—-9) B2r2 212\ & )
—2b-x+ b%x | — ba?|
1 xh — bt
x/p_ 12 ’
I I
z z
SN S, N7
x/2 $2 b
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From this relation, we see that the SCT can be understood as an inversion of z*,

followed by a translation b, and followed again by an inversion.

5.6 Conformal Algebra

The generators of conformal transformations are:

(translation)  P* = —i0* |

)

(dilation) D = —iz,0" ,

(rotation)  L* =i (20" — x¥0") |
)

(SCT) & = —i (22"2,0" — 2°0") .

Then the conformal algebra (commutation rules) [5,21,22] can be derived as, 1)

commutations among the K",

[/, RY] = RFRY — RVR!

= i2((2x“xp(9p — x2(9“) (Qx”xpap — x28”) — (Qx”xpap — x23”) (2:1;“:16,)3’) — xza“)) ,

(202,020 T,) — (22 @) — (DY T, + (£2OH0")

— (22w, 2T, ) + (20 2 NTT) + (22D W2 T, 0) — (22DHT*T™)) |

(R /] =0

v

2) commutations among 8" and P,

[8#, P"] = R*PY — PYR" = i*((22"2,0° — 2°0") 0" — 0¥ (22"3,0° — 2°0")) ,

= i2(((2x“xpap)a” - (:E28“)8”) — (20" (atx,0°) — 0" (x,270"))) ,

= 2'2((2/55“:%8“5”7—;&8*@7’/)

i2

iQ

?:2

- (28”x“xp0p + 224 0" x,0° +W— 0" x,x’ O — x,0" 2 O* —Mé"é‘ﬁ)) ,
— (2g”“xp8” + 22t gy 0" — 0z 270" — :Eaa”x"(?“)) ,
— (29”“1;,,8” + 22t g 0P — gy x7O" — xggoyf)“)) ,

2g"x,0° — (2210” — 22" 0M))

[8", P"] = 2i (gD — L")V .
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3) commutations among D and L*,

[D, L] = DL™ — L" D = —i*((2,0") (29" — 2"0") — (20" — 2"0") (x,0")) ,
—i? (2,02 07 + 2,007 — 2, 0P O — 12X — a0
— M0 + 2V Ol 07p + 2V, 0007)

D, L") =0l .

4) commutations among D and P*,

[D, P*] = DP* — P*D = i*((2,0")0" — 0"(,,0")) ,
= i*(2,8°0" — 0"1,0" — 2,0*0") ,
= —i’ghd" = —i*0" |

(D, P*] = iP* |/ .

5) commutations among D and 8&*,

[D, 8*] = DR" — &*D = i*(2,0" (22", 0" — 2°0") — (22#2,0" — 2°0") 2,0") ,
= i* (22,07 (2", 0") — 2,07 (°0") — (20"2,0")x,0" + (x°0")z,0") |,
= i? (2a:p8pm“xl,3” + 2x,2" 02, 0" + 22,2 ;070" — xpapx28“ —W
— 25,0 2,0° — 20t 2,00 + 20 x,0° + 12x;0M0)
= W+ 21,2 gl 0" — 2,0 T*O" — — 222, 0" + g“@p)

= i*(22,8" 0" — 2,072 + 2*0") = i* (202" 0° — 2,0° (w,27)0" + z*O") |

(
= 2 (21: 0P — 1,0°x,27 0" — 1,007 0" + :1:28“)
=q? (295 2H0P — x,90x° 0" — x 1,977 O + 3528“)

(

=42 22,210” — x,2P Ot — x,xP 0" + xg(?“)

=42 (2x“xpa” — x23“): (—1)(—i) (21‘#%8[) - x2au) ’

D, 8] = —if" v .
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6) commutations among K” and L*,

(RO, L] = RPLMY — LM RP
= —*((22°2,0 — 2°0°) (20" — 2" O") — (2M0” — 2" O") (22°2,07 — 2*0")) ,
= —i?((22°1,07)(2"0") — (22°2,0° ) (2" O") — (2°0°)(z"0”) + (220" (2" O")
— (20") (22" 1,0°) + (2#0")(2°0”)) + (27 O")(22Px,07) — (2" 0")(x20)) ,
= —i2(2xpxo(9"x“8” + 22Px,xt0° 0" — 22Px,0° VOV — 2xPx ¥ O° O
— 22031 — 22D + 220P T O + 22RO — 20t Py O — 22t PO, 00
— 2xF P, 0V + 1M 220P + 2 ePEOP + 22V M P, O + 22 aP M s O°
+ 20¥ P, 007 — 2V DM aOP — paROrTP) |
= —i* (2220 + 20 ayh 07T — 222 0" — 20P a2 00" — 1P g
+ 223G O — 2 g P, O — 2ahaPT” — atalas 00T + 2rTOP
+ 207 g a0 + 22 P T + 22" alasOMTT — 2 TP
= —i}(—2?gPrd" + 2% g Ot — 20t g P 1,07 + 22" g w,07)

= —i?(g"" (22" 1,0° — 2°0") — g" (22" 2,07 — 2?0")) ,

D =i ("R — g

Therefore the full Conformal algebra is given by

[P", P} =0,
[/, /"] =0,
[D, P¥] = iP"|
(D, 8] = —if*|

[pp’Luf/} — '(gpupu _ ngpu) ’

[, D7 = i ("R — ")

[Lozﬁ’ LPU] — (gBULaﬂ _ gﬁpLaU + gochBa _ gaaLﬁp)

[R¥, PY] =2i(¢""D — L"),

D, L™ = 0]
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Chapter 6

Conclusion & Future Scope

In Chapter 4, we presented the Poincaré algebra in Interpolation form. We showed
the Boost K? is dynamical in the region where 0 < § < 7 but becomes kinematic
in the light-front limit (0 = 7).

In Chapter 5, we formally developed the Conformal algebra and showed that the
set of conformal transformations manifestly forms a group, and it has the Poincaré
group as a subgroup. Our future work is to extend the Interpolation method to

Conformal algebra.
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