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ABSTRACT

The instant form and the front form of relativistic dynamics introduced by Dirac in

1949 can be interpolated by introducing an interpolation angle parameter δ spanning

between the instant form dynamics (IFD) at δ = 0 and the front form dynamics,

which is now known as the light-front dynamics (LFD) at δ = π
4
. We present the

Poincaré algebra interpolating between instant and light-front time quantizations.

We show the Boost K3 is dynamical in the region where 0 ≤ δ < π
4

but becomes

kinematic in the light-front limit (δ = π
4
). We show this will then be extended to

Conformal algebra.

iii



Contents

CERTIFICATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 INTRODUCTION 1

2 Poincaré Algebra 3
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Chapter 1

INTRODUCTION

“ Working with a front is a process that is unfamiliar to physicists. But still, I feel

that the mathematical simplification that it introduces is all-important. I consider

the method to be promising and have recently been making an extensive study of

it. It offers new opportunities, while the familiar instant form seems to be played

out ” - P.A.M. Dirac (1977)

For the study of relativistic particle systems, Dirac [11] proposed three different

forms of the relativistic Hamiltonian dynamics in 1949: i.e. the instant (x0 = 0),

front (x+ = (x0 + x3)/
√

2 = 0), and point (xµx
µ = a2 > 0, x0 > 0) forms. The

instant form dynamics (IFD) of quantum field theories is based on the usual equal

time t = x0 quantization (units such that c = 1 are taken here), which provides a

traditional approach evolved from the non-relativistic dynamics. The IFD makes a

close contact with the Euclidean space, developing temperature-dependent quantum

field theory, lattice QCD, etc. The equal light-front time τ ≡ (t + z/c)/
√

2 =

x+ quantization yields the front form dynamics, nowadays more commonly called

light-front dynamics (LFD), which provides an innovative approach to the study of

relativistic dynamics. The quantization in the point form (xµxµ = a2 > 0, x0 > 0)

is called radial quantization. Among these three forms of relativistic dynamics

proposed by Dirac, however, the LFD carries the largest number (seven) of the

kinematic (or interaction independent) generators leaving the least number (three)

of the dynamics generators while both the IFD and the point form dynamics carry
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six kinematic and four dynamic generators within the total ten Poincaré generators.

[15,16,20]

The instant form and the front form of relativistic dynamics introduced by Dirac

[11] in 1949 can be interpolated by introducing an interpolation angle parameter δ

spanning between the instant form dynamics (IFD) at δ = 0 and the front form

dynamics, which is now known as the light-front dynamics (LFD) at δ = π
4
. This

Interpolation method was first introduced by Kent Hornbostel in 1992 [14]. Then

Chueng-Ryong Ji [15–20] pioneered the idea of connecting the instant form dynamics

and the light-front dynamics and contributed to utilizing the light cone in solving

relativistic bound state and scattering problems.

In Chapter 4, we will present the Poincaré algebra in Interpolation form. We

will show the Boost K3 is dynamical in the region where 0 ≤ δ < π
4

but becomes

kinematic in the light-front limit (δ = π
4
).

In Chapter 2, we will go through the formal development of Poincaré algebra.

In Chapter 3, we will look at the formulation of light-front dynamics essential for

our work. Chapter 4 will develop the interpolation method between Instant Form

Dynamics (IFD) and Light Front Dynamics (LFD). Finally, in Chapter 5, we will

formally develop the Conformal algebra and show how this Interpolation method

can be extended to Conformal algebra.
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Chapter 2

Poincaré Algebra

The Poincaré algebra is the Lie algebra of the Poincaré group. In this chapter, we

will introduce the basic notions of Poincaré algebra.

2.1 Continuous Group

Continuous group: group parameters take continuous value.

2.1.1 The Rotation

We shall first briefly review the Continuous Rotation Group. This will then be

extended to the Lorentz group. [1–3]

A general spatial rotation is of the form

r′ = Rr; (2.1)

R is the rotation matrix. Since rotations perserve distance from the origin, x′2 +

y′2 + z′2 = x2 + y2 + z2, or r′T r′ = rT r (T = transpose), so

rTRTRr = rT r, (2.2)

RTR = 1, (2.3)

and R is an orthogonal 3 × 3 matrix. These matrices form a group: if R1 and R2

are orthogonal, so is R1R2:

(R1R2)
TR1R2 = RT

2R
T
1R1R2 = 1 , (2.4)

3



This group is denoted O(3); for matrices in n dimensions it is O(n). Unitary ma-

trices also form a group, denoted U(n), but Hermitian matrices do not, unless they

commute.

As an example of a rotation, consider a rotation of a vector V about the z

axis. This rotation, considered as an active rotation (i.e. a rotation of the vector,

leaving the co-ordinate axes fixed), is left-handed; considered as a passive rotation

(i.e. rotating the axes, leaving the vector fixed) it is right-handed. We have
V ′x

V ′y

V ′z

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1



Vx

Vy

Vz

 , (2.5)

so may denote the rotation matrix by

Rz(θ) =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . (2.6)

Similar matrices for rotations about the x and y axes are

Rx(φ) =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 , (2.7)

Rx(ψ) =


cosψ 0 − sinψ

0 1 0

sinψ 0 cosψ

 . (2.8)

Note that these matrices do not commute

Rx(φ)Rz(θ) 6= Rz(θ)Rx(φ) , (2.9)

the rotation group, O(3), is non-Abelian. It is a Lie group; that is, a continuous

group, with an infinite number of elements, since the parameters of rotation, which

are angles, take on a continuum of values. It is easy to see that a general rotation has

three parameters; R has nine elements, and equation (2.3) gives six conditions on

them. These parameters may, for example, be chosen to be the three Euler angles.
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Corresponding to three parameters are three generators defined by

Jz =
1

i

dRz(θ)

dθ

∣∣∣
θ=0

=


0 −i 0

i 0 0

0 0 0

 , (2.10)

Jx =
1

i

dRx(φ)

dφ

∣∣∣
φ=0

=


0 0 0

0 0 −i

0 i 0

 , (2.11)

Jy =
1

i

dRy(ψ)

dψ

∣∣∣
ψ=0

=


0 0 i

0 0 0

−i 0 0

 . (2.12)

These generators are Hermitian, and infinitesimal rotations are given by, for exam-

ple,

Rz(δθ) = 1 + iJzδθ, Rx(δψ) = 1 + iJxδψ. (2.13)

The commutatorRz(δθ)Rx(δθ)R
−1
z (δθ)R−1x (δθ) of these two rotations (compare ((2.9)))

may now be calculated using the easily verified commutation relations

JxJy − JyJx ≡ [Jx, Jy] = iJz and cyclic permutations . (2.14)

To first order, it is found to be a rotation about the y axis. The relations ((2.14)),

having a factor h, will be recognised as the commutation relations for the compo-

nents of angular momentum. So angular momentum operators are the generators of

rotations.

It is now straightforward to write down the rotation matrix for finite rotations.

The matrix corresponding to a rotation about the z axis through an angle θ =

N δθ (N −→∞) is clearly [3]

Rz(θ) = [Rz(δθ)]
N ,

= (1 + iJzδθ)
N ,

=

(
1 + iJz

θ

N

)N
,

= eiJzθ . (2.15)

5



We may check that this yields the required matrix ((2.6)). Defining the exponential

by its power series expansion, we have

eiJzθ = 1 + iJzθ − iJ2
z

θ2

2!
− iJ3

z

θ3

3!
+ . . . (2.16)

=


1 0 0

0 1 0

0 0 1

+ θ


0 1 0

−1 0 0

0 0 0

+
θ2

2!


−1 0 0

0 −1 0

0 0 0

+ . . . (2.17)

=


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 , (2.18)

which is ((2.6)).

2.1.2 The Boost

Pure ‘boost’ Lorentz transformations are those connecting two inertial frames, mov-

ing with relative speed v. If the relative motion is along the common x axis, the

equations are

x1′ =
x1 + vt√

1− v2

c2

; x2′ = x2; x3′ = x3; x0′ =
x0 + vx1

c2√
1− v2

c2

. (2.19)

Putting γ = 1√
1− v2

c2

and β = v
c
. Observing that γ2 − β2γ2 = 1, we may put

γ = coshφ, γβ = sinhφ, (2.20)

thus parameterising the transformation in terms of the variable φ, with tanhφ = v
c
,

and we have [1, 2, 4] 
x0′

x1′

x2′

x3′

 =


coshφ sinhφ 0 0

sinhφ coshφ 0 0

0 0 1 0

0 0 0 1




x0

x1

x2

x3

 . (2.21)
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Let us call the above matrix the boost matrix B. The generator Kz of this boost

transformation along the x axis is defined by analogy with ((2.12)):

Kx =
1

i

dB(φ)

dφ

∣∣∣
φ=0

= −i


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 . (2.22)

Similarly, the other boost generators are

Ky = −i


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , (2.23)

Kz = −i


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 , (2.24)

(2.25)

In this 4 x 4 matrix notation, the rotation generators ((2.12)) may be written

Jx = −i


0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

 , (2.26)

Jy = −i


0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0

 , (2.27)

Jz = −i


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 . (2.28)
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The most general Lorentz transformation is composed of boosts in three directions,

and rotations about three axes, and the six generators are those above. Their

commutation relations may be calculated explicitly, and we find [2]

[Kx, Ky] = −iJz and cyclic perms, (2.29)

[Jx, Kx] = 0 etc., (2.30)

[Jx, Ky] = iKz and cyclic perms, (2.31)

together with ((2.14)), involving Js only. An interesting consequence of these rela-

tions is that pure Lorentz transformations do not form a group, since the generators

K do not form a closed algebra under commutation.

2.2 Lorentz Group

The Lorentz boost can be written in matrix form as [1, 2]

x′ = Λx. (2.32)

In terms of components, this can be written as

xµ′ = Λµ
νx

ν , (2.33)

where we have defined the components of the matrix Λ by

Λµ
ν =


γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1

 . (2.34)

We will now find the necessary and sufficient condition for a 4× 4 matrix Λ to leave

the inner product of any two 4-vectors invariant. Suppose Aµ and Bµ transform by

the same matrix Λ:

Aµ′ = Λµ
αA

α, Bµ′ = Λµ
βB

β. (2.35)

Then the inner products A′.B′ and A.B can be written as

A′νB
′ν = (gµνΛ

µ
αΛν

β)AαBβ, (2.36)

AβB
β = gαβA

αBβ. (2.37)

8



In order for A′.B′ = A.B to hold for any A and B, the coefficients of AαBβ should

be the same term by term:

gµνΛ
µ
αΛν

β = gαβ . (2.38)

2.2.1 Generators of the Lorentz Group

The goal is to show that any element Λ that is continuously connected to the identity

can be written as [1, 2]

Λ = eEiKi+θiJi , (i=1,2,3) , (2.39)

where Ei and θi are real numbers and Ki and Li are 4 × 4 matrices. Such group

whose elements can be parametrized by a set of continuous real numbers (in our

case they are Ei and θi) is called a Lie group. The operators Ki and Li are called

the generators of the Lie group.

2.2.2 Infinitesimal Transformations

Let’s start by looking at a Lorentz transformation [1,2] which is infinitesimally close

to the identity:

Λµ
ν = gµν + ωµν , (2.40)

where ωµν is a set of small (real) numbers. Inserting this to the defining condition

((2.38)), we get

gαβ = ΛναΛν
β , (2.41)

= (gνα + ωνα)(gνβ + ωνβ) ,

= gαβ + ωβα + ωαβ + ωναω
ν
β. (2.42)

Keeping terms to the first order in ω, we then obtain

ωβα = −ωαβ . (2.43)

Namely, is anti-symmetric (which is true when the indices are both subscript or

both superscript; in fact, ωαβ is not anti-symmetric under α←→ β), and thus it has

9



6 independent parameters:

ωαβ =


0 ω01 ω02 ω03

−ω01 0 ω12 ω13

−ω02 −ω12 0 ω23

−ω03 −ω13 −ω23 0

 . (2.44)

This can be conveniently parametrized using 6 anti-symmetric matrices as

ωαβ = ω01(L
01)αβ + ω02(L

02)αβ + ω03(L
03)αβ

+ ω23(L
23)αβ + ω13(L

13)αβ + ω12(L
12)αβ , (2.45)

=
∑
µ<ν

ωµν(L
µν)αβ , (2.46)

with

(L01)αβ =


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 ,

(L02)αβ =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 ,

(L03)αβ =


0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0

 ,

(L23)αβ =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

 ,
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(L13)αβ =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 ,

(L12)αβ =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 . (2.47)

Note that for a given pair of µ and ν, (Lµν)αβ is a 4× 4 matrix, while ωµν is a real

number. The elements (Lµν)αβ can be written in a concise form as follows: first, we

note that in the upper right half of each matrix (i.e. for α < β), the element with

(α, β) = (µ,mu) is 1 and all else are zero, which can be written as gµαg
ν
β. For the

lower half, all we have to do is to flip α and β and add a minus sign. Combining

the two halves, we get

(Lµν)αβ = gµαg
ν
β − g

µ
βg

ν
α. (2.48)

This is defined only for µ < ν so far. For µ > ν, we will use this same expression

((2.48)) as the definition; then, (Lµν)αβ is anti-symmetric with respect to (µ←→ ν):

(Lµν)αβ = −(Lνµ)αβ, (2.49)

which also means (Lµν)αβ = 0 if µ = ν. Together with ωµν = −ωνµ, ((2.46)) becomes

ωαβ =
∑
µ<ν

ωµν(L
µν)αβ =

∑
µ>ν

ωµν(L
µν)αβ =

1

2
ωµν(L

µν)αβ , (2.50)

where in the last expression, sum over all values of µ and ν is implied. The infinites-

imal transformation ((2.40)) can then be written a

Λα
β = gαβ +

1

2
ωµν(L

µν)αβ , (2.51)

or in matrix form,

Λ = I +
1

2
ωµνL

µν , (2.52)

where the first indices of Lµν , which is a 4 × 4 matrix for given µ and ν, is taken

to be superscript and the second subscript; namely, in the same way as Lorentz

11



transformation. Namely, when no explicit indexes for elements are given, the 4× 4

matrix Mµ is defined as

Lµν ≡ (Lµν)αβ , (2.53)

It is convenient to divide the six matrices to two groups as

Ki ≡ L0i, Ji ≡ Ljk (i,j,k: cyclic). (2.54)

We always use subscripts for Ki and Ji since only possible values are i = 1, 2, 3.

The elements of the matrices Ki’s and Ji’s are defined by taking the first Lorentz

index to be superscript and the second subscript as is the case for Lµν :

Ki ≡ (Ki)
α
β , Ji ≡ (Ji)

α
β . (2.55)

Later, we will see that K’s generate boosts and J ’s generate rotations. Explicitly,

they can be obtained by raising the index α in ((2.47)) (note also the the minus sign

in J2 = M13):

K1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 ,

K2 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 ,

K3 =


0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0

 ,

J1 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

 ,

12



J2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 ,

J3 =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 . (2.56)

An explicit calculation shows that K’s and J ’s satisfy the following commutation

relations: [1, 2]

[Kx, Ky] = −iJz and cyclic perms, (2.57)

[Jx, Kx] = 0 etc., (2.58)

[Jx, Ky] = iKz and cyclic perms. (2.59)

2.3 Fields: Symmetries and Conservation laws

Symmetries lie at the heart of our modern conception of physics. It is therefore

very important to understand how we formulate the symmetry properties of a given

theory and their consequences on observables. [5]

2.3.1 The Dynamics of Fields

A field is a quantity defined at every point of space and time (~x, t). While classi-

cal particle mechanics deals with a finite number of generalized coordinates qa(t),

indexed by a label a, in field theory we are interested in the dynamics of fields [6]

Φa(~x, t) , (2.60)

where both a and ~x are considered as labels. Thus we are dealing with a system with

an infinite number of degrees of freedom — at least one for each point ~x in space.

Notice that the concept of position has been relegated from a dynamical variable in

particle mechanics to a mere label in field theory.
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2.3.2 Definitions

We consider a classical theory for some fields, collectively denoted as Φ, which are

functions on a space-time manifold that we shall take to be flat Rd. The dynamics

of the fields Φ is fixed by a Lagrangian density L(Φ, ∂µΦ) or by the action S[Φ]

defined by [5]

S[Φ] =

∫
ddxL(Φ, ∂µΦ). (2.61)

Consider a map x 7−→ x′, where x′ ∈ Rd is some invertible function of x ∈ Rd,

together with some transformation of the fields Φ 7−→ Φ′ defined by

Φ′(x′) = F (Φ(x)), (2.62)

for some function S. Under such a transformation, the action will generally be

modified: S 7−→ S ′,with S ′ defined by the equation S ′[Φ′] = S[Φ], and the transfor-

mation is a symmetry if S = S ′.

Let us consider some examples.

Translations

Translations are simply defined by

x′ = x+ a, (2.63)

where a ∈ Rd. Most of the fields Φ that we consider are scalars under translation,

that is, F reduces to the identity:

F (Φ(x)) = Φ(x) = Φ′(x′) = Φ′(x+ a). (2.64)

Rotations

Rotations are given by

x′µ = Rµ
νx
′ν , (2.65)

where the matrix R is such that

δµνR
µ
λR

ν
ρ = δλρ . (2.66)
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The function F corresponding to rotations is characterised by the representation

that we choose for the field Φ. For example, for a scalar field φ, the transformation

is

φ′(R.x) = φ(x) , (2.67)

where we use the common notation (R.x)µ = Rµ
ν .x

ν . For a vector field V µ the

transformation is

V ′µ(R.x) = Rµ
νV

ν(x) , (2.68)

and so on for tensors of various ranks.

For a field Φ transforming in any representation L of the rotation group, we write

the corresponding transformation function F as

Φ′(R.x) = LR[Φ(x)], (2.69)

that is, LR is the linear operator representing the transformation R.

2.3.3 Noether’s Theorem

Let us consider a continuous transformation, that is, the map x 7−→ x′ is charac-

terised continuously by some parameters ωa. We can then consider a transformation

“close to identity,” that is, for [5]

x′ = x+ ωa
δx

δωa
, (2.70)

we can write

Φ′(x′) = F (Φ(x)) = Φ(x) + ωa
δF (Φ(x))

δωa
, (2.71)

where summation on the index a is understood. We define the generators Ga by

δωΦ(x) = Φ′(x)− Φ(x) = −iωaGaΦ(x), (2.72)

and hence

iGaΦ =
δxµ

δωa
∂µΦ− δF

δωa
. (2.73)
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Consider a map x 7−→ x′, in general φ(x) 7−→ φ′(x′), let’s introduce the variation,

[7, 8]

δφ = φ′(x)− φ(x) , (2.74)

δ̃φ = φ′(x′)− φ(x) ,

δ̃φ = φ′(x′)− φ(x′) + φ(x′)− φ(x) ,

= δφ(x′) +
∂φ

∂xµ
δxµ ,

δ̃φ = δφ(x) +
∂φ

∂xµ
δxµ ,

=⇒δφ(x) = δ̃φ− ∂φ

∂xµ
δxµ . (2.75)

If we require that the Action (
∫
d4xL) is invariant under the transformation (x 7−→

x′), then we need to show,

0 =

∫
d4x

(
δL+ ∂µ (L δxµ)

)
, (2.76)

=

∫
d4x

((
∂L
∂φ

)
δφ+

(
∂L
∂∂µφ

δ∂µφ

)
+ ∂µ (L δxµ)

)
,

=

∫
d4x

((
∂µ

∂L
∂∂µφ

)
δφ+

(
∂L
∂∂µφ

δ∂µφ

)
+ ∂µ (L δxµ)

)
,

=

∫
d4x

(
∂µ

(
∂L

∂(∂µφ)
.δφ

)
+ ∂µ (L δxµ)

)
,

0 =

∫
d4x

(
∂µ

(
∂L

∂(∂µφ)
.

(
δ̃φ− ∂φ

∂xν
δxν
))

+ ∂µ (L δxµ)

)
. (2.77)

The canonical current densities is jµ, such that ∂µj
µ = 0

=⇒ jµ =

(
∂L

∂(∂µφ)
.

(
δ̃φ− ∂φ

∂xν
δxν
))

+ (L δxµ) ,

jµ =
∂L

∂(∂µφ)
.δ̃φ− ∂L

∂(∂µφ)

∂φ

∂xν
δxν + L δxµ ,

jµ =
∂L

∂(∂µφ)
.δ̃φ− T µν δxν , (2.78)

(2.79)

where,

T µν =
∂L

∂(∂µφ)

∂φ

∂xν
+ Lδµν . (2.80)

We now identify the parameters, the generators, and associated canonical current

densities in our examples.
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Translations

The parameters ωa for an infinitesimal translation are the components aµ of the

infinitesimal vector a defining the infinitesimal transformation, and thus the index

a is in this case a space-time index µ : ωµ = aµ. Using ((2.64)) we thus find that

δxµ

δων
= δµν ,

δF

ωµ
= 0. (2.81)

The generator, that we write Pµ and define by equation ((2.73)), reads

Pµ = −i∂µ . (2.82)

For Translations, δ̃φ = 0 and δxν = −aµ, then

jµ = T µν a
ν , (2.83)

then the conservation,

∂µj
µ = ∂µT

µ
ν = 0 . (2.84)

Rotation

A infinitesimal rotation is characterised by an antisymmetric matrix ωµν = −ωνµ
and is given by

x′µ = xµ + ωµνx
ν . (2.85)

Formula ((2.70)) then yields the following variation:

δxµ

δωνρ
=

1

2
(δµνxρ − δµρxν). (2.86)

For a field Φ transforming under a general representation L as in ((2.69)), the effect

of an infinitesimal rotation is of the form

LR[Φ] = Φ− i

2
ωµνS

µν [Φ], (2.87)

for some operators Sµν = −Sνµ representing the rotation algebra, the numerical

factors being introduced for future convenience. Using ((2.86)) and ((2.87)), the

generators Lµν for rotations and defined in ((2.73)) are thus given by

Lµν = i(xµ∂ν − xν∂µ) + Sµν . (2.88)
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2.4 Poincaré Algebra

We recall the definition ((2.73)) of generator of an infinitesimal transformation. If

we suppose for the moment that the fields are unaffected by the transformation, the

generators of the Poincaré group are easily seen to be [5, 9]

(translation) P µ̂ = −i∂µ̂ , (2.89)

(rotation) Lµ̂ν̂ = i
(
xµ̂∂ ν̂ − xν̂∂µ̂

)
, (2.90)

Then the Poincaré algebra (commutation rules) can be derived as,

1) Commutation among P µ,

[P µ, P ν ] = P µP ν − P νP µ = i2(∂µ∂ν − ∂ν∂µ) = 0 ,

[P µ, P ν ] = 0 X . (2.91)

2) Commutation among P ρ and Lµν ,

[P ρ, Lµν ] = P ρLµν − LµνP ρ = −i2(∂ρ (xµ∂ν − xν∂µ)− (xµ∂ν − xν∂µ) ∂ρ) ,

= −i2 (∂ρxµ∂ν +���
�

xµ∂ρ∂ν − ∂ρxν∂µ −����xν∂ρ∂µ −����xµ∂ν∂ρ +���
�

xν∂µ∂ρ) ,

= −i2 (∂ρxµ∂ν − ∂ρxν∂µ) = i (gρµ(−i∂ν)− gρν(−i∂µ)) ,[
P ρ, Lµν̂

]
= i (gρµP ν − gρνP µ) X . (2.92)

3) Commutation among Lµν ,[
Lαβ, Lρσ

]
= LαβLρσ − LρσLαβ ,

= i2
((
xα∂β − xβ∂α

)
(xρ∂σ − xσ∂ρ)− (xρ∂σ − xσ∂ρ)

(
xα∂β − xβ∂α

))
,

= i2
(

(xα∂β)(xρ∂σ)− (xα∂β)(xσ∂ρ)− (xβ∂α)(xρ∂σ) + (xβ∂α)(xσ∂ρ)

− (xρ∂σ)(xα∂β) + (xρ∂σ)(xβ∂α) + (xσ∂ρ)(xα∂β)− (xσ∂ρ)(xβ∂α)

)
,

= i2
(

(xα∂βxρ∂σ +���
���

xαxρ∂β∂σ)− (xα∂βxσ∂ρ +���
���

xαxσ∂β∂ρ)

− (xβ∂αxρ∂σ +���
���

xβxρ∂α∂σ) + (xβ∂αxσ∂ρ +���
���

xβxσ∂α∂ρ)

− (xρ∂σxα∂β +���
���

xρxα∂σ∂β) + (xρ∂σxβ∂α +���
���

xρxβ∂σ∂α)

+ (xσ∂ρxα∂β +���
���

xσxα∂ρ∂β)− (xσ∂ρxβ∂α +���
���

xσxβ∂ρ∂α)

)
,

= i2
(

(xα∂βxρ∂σ)− (xα∂βxσ∂ρ)− (xβ∂αxρ∂σ) + (xβ∂αxσ∂ρ)− (xρ∂σxα∂β)

+ (xρ∂σxβ∂α) + (xσ∂ρxα∂β)− (xσ∂ρxβ∂α)

)
, (2.93)
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[
Lαβ, Lρσ

]
= i2

(
(xαgβρ∂σ)− (xαgβσ∂ρ)− (xβgαρ∂σ) + (xβgασ∂ρ)− (xρgσα∂β) + (xρgσβ∂α)

+ (xσgρα∂β)− (xσgρβ∂α)

)
,

= −i
(
gβσi(xα∂ρ − xρ∂α)− gβρi(xα∂σ − xσ∂α) + gαρi(xβ∂σ − xσ∂β)

− gασi(xβ∂ρ − xρ∂β)

)
,[

Lαβ, Lρσ
]

= −i
(
gβσLαρ − gβρLασ + gαρLβσ − gασLβρ

)
X . (2.94)

So, the Poincaré algebra are: [5, 9]

[P µ, P ν ] = 0 , (2.95)[
P ρ, Lµν̂

]
= i (gρµP ν − gρνP µ) , (2.96)[

Lαβ, Lρσ
]

= −i
(
gβσLαρ − gβρLασ + gαρLβσ − gασLβρ

)
. (2.97)

2.5 Example: Klein–Gordon (1+1)

Consider the Lagrangian [6–9] for a real scalar field φ in d = (1 + 1),

LKG =
1

2
∂µφ∂

µφ− 1

2
m2φ2, (2.98)

its equation of motion is given by,

�φ+
1

2
m2φ = 0, (2.99)

the Energy-momentum tensor is given by,

Tµν = ∂µφ∂νφ− gµνL, (2.100)

4 divergence of Tµν ,

∂µTµν = ∂µ(∂µφ∂νφ− gµν(
1

2
∂ρφ∂

ρφ− 1

2
m2φ2)) ,

= ∂µ∂µφ∂νφ+ ∂µφ∂
µ∂νφ− ∂ν(

1

2
∂ρφ∂

ρφ− 1

2
m2φ2) ,

= �φ∂νφ+ ∂µφ∂
µ∂νφ−

1

2
∂ν∂ρφ∂

ρφ− 1

2
∂ρφ∂ν∂

ρφ+
1

2
m2φ∂νφ ,

= �φ∂νφ+
1

2
m2φ∂νφ

∂µTµν = [�φ+
1

2
m2φ]∂νφ = 0 . (2.101)
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Then

T00 = T 00 =
1

2
∂0φ∂0φ+

1

2
∂1φ∂1φ+

1

2
m2φ2,

T01 = −T 01 = ∂0φ∂1φ,

T10 = −T 10 = ∂1φ∂0φ,

T11 = T 11 =
1

2
∂0φ∂0φ+

1

2
∂1φ∂1φ−

1

2
m2φ2.

=⇒ Tµν =

1
2
∂0φ∂0φ+ 1

2
∂1φ∂1φ+ 1

2
m2φ2 ∂0φ∂1φ

∂1φ∂0φ
1
2
∂0φ∂0φ+ 1

2
∂1φ∂1φ− 1

2
m2φ2

 .

(2.102)

and our field and it’s derivatives are,

φ(x) =

∫
dk1√

2π

1√
2ω(k1,m)

[
a(k1,m)e−ikx + a†(k1,m)eikx

]
, (2.103)

π(x) = ∂0φ(x) =− i
∫

dk1√
2π

√
ω(k1,m)

2

[
a(k1,m)e−ikx − a†(k1,m)eikx

]
, (2.104)

∂1φ(x) =− i
∫

dk1√
2π

k1√
2ω(k1,m)

[
a(k1,m)e−ikx − a†(k1,m)eikx

]
, (2.105)

Now, let’s find the P µ,

P µ =

∫
dx1 T 0µ . (2.106)

The Hamiltonian (P 0) will be,

P 0 =

∫
dx1 T 00 =

∫
dx1

(
1

2
∂0φ∂0φ+

1

2
∂1φ∂1φ+

1

2
m2φ2

)
, (2.107)

P 0 =

∫
dx1

(
− 1

2

1

2π

∫
dk1

∫
dk1′

√
ω(k,m)

2

√
ω(k′,m)

2

[
a(k1,m)e−ik

1x − a†(k1,m)eikx
]

×
[
a(k1′,m)e−ik

1′x − a†(k′1,m)eik
′x
]

− 1

2

1

2π

∫
dk1

∫
dk1′

k1k1′√
2ω(k,m)

√
2ω(k′,m)

[
a(k1,m)e−ikx − a†(k1,m)eikx

]
×
[
a(k1′,m)e−ik

′x − a†(k1′,m)eik
′x
]

+
1

2

m2

2π

∫
dk1

∫
dk1′

1√
2ω(k,m)

√
2ω(k′,m)

[
a(k1,m)e−ikx + a†(k1,m)eikx

]
×
[
a(k1′,m)e−ik

′x + a†(k1′,m)eik
′x
])

,
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P 0 =

∫
dx1

(( 1

8π

∫
dk1

∫
dk′1

((
−
(√

ω(k,m)
√
ω(k′,m)

)
−
( k1k′1√

ω(k,m)
√
ω(k′,m)

))
×
([
a(k1,m)e−ikx − a†(k1,m)eikx

]
.
[
a(k′1,m)e−ik

′x − a†(k′1,m)eik
′x
]))

+
(m2

8π

∫
dk1

∫
dk1′

1√
ω(k,m)

√
ω(k′,m)

×
[
a(k1,m)e−ikx + a†(k1,m)eikx

]
.
[
a(k1′,m)e−ik

′x + a†(k1′,m)eik
′x
]))

,

we can use the relations,
∫
dx1 e−i(k

′+k).x = (2π)e−2iωtδ(k1+k1′) and
∫
dx1 e−i(k

′−k).x =

(2π)δ(k1 − k1′). then do the
∫
dx1 integration,

P 0 =
1

8π

∫
dk1

∫
dk′1

((
−
√
ω(k,m)

√
ω(k′,m)− k1k′1√

ω(k,m)
√
ω(k′,m)

)
×
([
a(k1,m)a(k′1,m)(2π)e−2iωtδ(k1 + k1′)

]
−
[
a(k1,m)a†(k′1,m)(2π)δ(k1 − k1′)

]
−
[
a†(k1,m)a(k′1,m)(2π)δ(k1′ − k1)

]
+
[
a†(k1,m)a†(k′1,m)(2π)e+2iωtδ(k1 + k1′)

])
+

1

8π

∫
dk1

∫
dk′1

(
m2 1√

ω(k,m)
√
ω(k′,m)

×
([
a(k1,m)a(k′1,m)(2π)e−2iωtδ(k1 + k1′)

]
+
[
a(k1,m)a†(k′1,m)(2π)δ(k1 − k1′)

]
+
[
a†(k1,m)a(k′1,m)(2π)δ(k1′ − k1)

]
+
[
a†(k1,m)a†(k′1,m)(2π)e+2iωtδ(k1 + k1′)

])))
,

then do the
∫
dk1′ integration, (use, ω2 = k2 +m2 −→ ω = k2

ω
+ m2

ω
)

P 0 =
1

8π

∫
dk1
[
��

���
���

���:0((
−ω +

k2

ω
+
m2

ω

)([
a(k1,m)a(−k1,m)(2π)e−2iωt

]
+
[
a†(k1,m)a†(−k1,m)(2π)e+2iωt

]))
+
���

���
���

�:2ω((
ω +

k2

ω
+
m2

ω

)([
a(k1,m)a†(k1,m)(2π)

]
+
[
a†(k1,m)a(k1,m)(2π)

]))]
,
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P 0 =
1

2

∫
dk1ω

( (
a(k1,m)a†(k1,m)

)
+
(
a†(k1,m)a(k1,m)

))
,

=
1

2

∫
dk1ω

( (
a(k1,m)a†(k1,m)

)
+ 2

(
a†(k1,m)a(k1,m)

)
−
(
a†(k1,m)a(k1,m)

))
,

=

∫
dk1 ω

(
a†(k1,m)a(k1,m)

)
+
��

���
���

�:∞ ; (Only energy difference matters!)
1

2

∫
dk1 ω δ(0) ,

P 0 = H =

∫
dk1 ω

(
a†(k1,m)a(k1,m)

)
. (2.108)

Now, the Momentum (P 1) will be,

P 1 =

∫
dx1 T 01 =

∫
dx1

(
∂0φ∂1φ

)
=

∫
dx1

(
π(x)∂1φ(x)

)
, (2.109)

then

P 1 =

∫
dx1

(
− 1

4π

∫
dk1

∫
dk1′

√
ω(k,m)

k1′√
ω(k′,m)

×
[
a(k1,m)e−ik

1x − a†(k,m)eikx
]
.
[
a(k1′,m)e−ik

1′x − a†(k′,m)eik
′x
] )

,

P 1 =− 1

2

∫
dk1

∫
dk1′

√
ω(k,m)

k1′√
ω(k′,m)

×
([
a(k1,m)a(k′1,m)e−2iωtδ(k1 + k1′)

]
+
[
a†(k1,m)a†(k′1,m)e+2iωtδ(k1 + k1′)

]
−
[
a(k1,m)a†(k′1,m)δ(k1 − k1′)

]
−
[
a†(k1,m)a(k′1,m)δ(k1′ − k1)

])
,

P 1 =
1

2��
��

��
�*

0 ; (because the
∫
dk1 (k1)× (even function) = 0)∫

dk1 (k1)
([
a(k1,m)a(−k1,m)e−2iωt

]
+
[
a†(k1,m)a†(−k1,m)e+2iωt

])
+

1

2

∫
dk1 (k1)

([
a(k1,m)a†(k1,m)

]
+
[
a†(k1,m)a(k1,m)

])
,

P 1 =
1

2

∫
dk1 (k1)

( (
a(k1,m)a†(k1,m)

)
+
(
a†(k1,m)a(k1,m)

))
,

=
1

2

∫
dk1 (k1)

( (
a(k1,m)a†(k1,m)

)
+ 2

(
a†(k1,m)a(k1,m)

)
−
(
a†(k1,m)a(k1,m)

))
,

=

∫
dk1 (k1)

(
a†(k1,m)a(k1,m)

)
+
���

���
���

�:0 ; (because (k1 × δ(0)) is odd)
1

2

∫
dk1 (k1) δ(0) ,

P 1 =

∫
dk1 (k1)

(
a†(k1,m)a(k1,m)

)
. (2.110)
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Let’s fine the Equal-x0 Commutation,

[
P 0, P 1

]
=

∫
dk1

∫
dk′1 ω k′1

[ (
a†(k1,m)a(k1,m)

)
,
(
a†(k′1,m)a(k′1,m)

)]
,

=

∫
dk1

∫
dk′1 ω k′1

(
a†(k′1,m)

[
a†(k1,m), a(k′1,m)

]
a(k1,m)

+ a†(k1,m)
[
a(k1,m), a†(k′1,m)

]
a(k′1,m)

)
,

=

∫
dk1

∫
dk′1 ω k′1

(
a†(k′1,m)

[
− δ(k′1 − k1)

]
a(k1,m)

+ a†(k1,m)
[
δ(k1 − k′1)

]
a(k′1,m)

)
,

=

∫
dk1 ω k1

(
−a†(k1,m)a(k1,m) + a†(k1,m)a(k1,m)

)
= 0 ,[

P 0, P 1
]

= 0 ,

[P µ, P ν ] = 0 X . (2.111)

The Boost operator (K1) will be,

L01 =

∫
dx1

(
x0T 01 − x1T 00

)
,

L01 = t P 1 −
∫
dx1

(
x1T 00

)
, (2.112)

to evaluate
∫
dx1 (x1T 00), let’s find the space-time evaluation of a(k1) in Heisenberg’s

Picture. [10]

a(k1, xµ) = eiPµx
µ

a(k1, 0)e−iPµx
µ

,

a(k1, x1) = eiP1.x1a(k1, 0)e−iP1.x1 ,

∂

∂x1
a(k1, x1) = iP1 e

iP1.x1a(k1, 0)e−iP1.x1 − eiP1.x1a(k1, 0) iP1 e
−iP1.x1 ,

∂

∂x1
a(k1, x1) = ieiP1.x1

[
P1, a(k1, 0)

]
e−iP1.x1 = −ik1 eiP1.x1a(k1, 0)e−iP1.x1 = −ik a(k1, x1) ,

=⇒ a(k1, x1) = e−ik1.x
1

a(k1, 0) ,

=⇒ a(k1, 0) = eik1.x
1

a(k1, x1) = e−ik
1.x1a(k1, x1) ,

=⇒ ∂

∂k1
a(k1, 0) = ix1 eik1.x

1

a(k1, x1) = ix1 a(k1, 0) ,

we found that
∫
dx1T 00 =

∫
dk1 ω

(
a†(k1,m)a(k1,m)

)
, so∫

dx1
(
x1T 00

)
= −i

∫
dk1 ω

(
a†(k1,m)

∂

∂k1
a(k1,m)

)
, (2.113)
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then,

L01 = t P 1 −
∫
dx1

(
x1T 00

)
,

L01 = t P 1 + i

∫
dk1 ω

(
a†(k1,m)

∂

∂k1
a(k1,m)

)
, (2.114)

L10 = −i
∫
dk1 ω

(
a†(k1,m)

∂

∂k1
a(k1,m)

)
− t P 1 , (2.115)

at x0 = 0 ,

L01 = i

∫
dk1 ω

(
a†(k1,m)

∂

∂k1
a(k1,m)

)
, (2.116)

L10 = −i
∫
dk1 ω

(
a†(k1,m)

∂

∂k1
a(k1,m)

)
, (2.117)

let’s find,

[L01, a(k1)] = i

∫
dk1′ ω′

[(
a†(k1′,m)

∂

∂k′1
a(k′1,m)

)
, a(k1)

]
= −iω ∂

∂k1
a(k1,m) ,

[L01, a†(k1)] = i

∫
dk1′ ω′

[(
a†(k1′,m)

∂

∂k′1
a(k1′,m)

)
, a†(k1)

]
,

= iω′
∫
dk1′a†(k1′,m)

∂

∂k′1
δ(k1 − k1′) ,

[L01, a†(k1)] = −iω ∂

∂k1
a†(k1,m). (2.118)

Now, the commutation relation between J01 and P µ will be

[
L01, P 0

]
=

∫
dk1 ω

[(
L01
)
,
(
a†(k1,m)a(k1,m)

)]
,

=

∫
dk1 ω

(
a†(k1,m)

[(
J01
)
, a(k1,m)

]
+
[(
J01
)
, a†(k1,m)

]
a(k1,m)

)
,

=− i
∫
dk1 ω ω

(
a†(k1,m)

(
∂

∂k1
a(k1,m)

)
+

(
∂

∂k1
a†(k1,m)

)
a(k1,m)

)
,

=− i
∫
dk1 ω ω

∂

∂k1

(
a†(k1,m)a(k1,m)

)
= i

∫
dk1 ω

∂ω

∂k1

(
a†(k1,m)a(k1,m)

)
,

=− i
∫
dk1ω

(
k

ω
a†(k1)a(k1)

)
= −i

∫
dk1k

(
a†(k1)a(k1)

)
= −i P 1 ,[

L01, P 0
]

= −i P 1 X ,[
L01, P 1

]
= −i P 0 X ,[

Lλσ, P µ
]

= i (gσµP λ − gλµP σ) X . (2.119)
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Chapter 3

Light-Front Dynamics

“ Working with a front is a process that is unfamiliar to physicists. But still I feel

that the mathematical simplification that it introduces is all-important. I consider

the method to be promising and have recently been making an extensive study of

it. It offers new opportunities, while the familiar instant form seems to be played

out ” - P.A.M. Dirac (1977)

According to Dirac [11] “ ... the three-dimensional surface in space-time formed

by a plane wave front advancing with the velocity of light. Such a surface will

be called front for brevity”. An example of a light-front is given by the equation

x+ = x0 + x3 = 0.

3.1 Light-Front Dynamics: Definition

A dynamical system is characterized by ten fundamental quantities: energy, mo-

mentum, angular momentum, and boost. In the conventional Hamiltonian form

of dynamics one works with dynamical variables referring to physical conditions at

some instant of time, the simplest instant being given by x0 = 0. Dirac found that

other forms of relativistic dynamics are possible. For example, one may set up a

dynamical theory in which the dynamical variables refer to physical conditions on

a front x+ = 0. The resulting dynamics is called light-front dynamics, which Dirac

called front-form for brevity. [12]

The variables x+ = x0+x1√
2

and x− = x0−x1√
2

are called light-front time and longi-

tudinal space variables respectively. Transverse variable x⊥ = (x1, x2).
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We denote the four-vector xµ by

xµ = (x0, x1, x2, x3) = (x0, x⊥, x3) . (3.1)

Scalar product

x.y = x0y0 − x⊥.y⊥ − x3y3 . (3.2)

Define light-front variables

x+ =
x0 + x1√

2
; x− =

x0 − x1√
2

. (3.3)

Let us denote the four-vector xµ by

xµ = (x+, x⊥, x−) . (3.4)

Scalar product

x.y = x+y− + x−y+ − x⊥.y⊥. (3.5)

The metric tensor is

gµν =


0 0 0 1

0 −1 0 0

0 0 −1 0

1 0 0 0

 , (3.6)

gµν =


0 0 0 1

0 −1 0 0

0 0 −1 0

1 0 0 0

 . (3.7)

Thus

x− = x+, x+ = x−. (3.8)

Partial derivatives:

∂+ = ∂− =
∂

∂x−
. (3.9)

∂− = ∂+ =
∂

∂x+
. (3.10)
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3.1.1 Dispersion Relation

In analogy with the light-front space-time variables, we define the longitudinal mo-

mentum k+ = k0 + k3 and light-front energy k− = k0 − k3.

For a free massive particle k2 = m2 leads to k+ ≥ 0 and the dispersion relation

k− = (k⊥)2+m2

k+
.

The above dispersion relation is quite remarkable for the following reasons: (1)

Even though we have a relativistic dispersion relation, there is no square root factor.

(2) The dependence of the energy k− on the transverse momentum k⊥ is just like in

the nonrelativistic dispersion relation. (3) For k+ positive (negative), k− is positive

(negative). This fact has several interesting consequences. (4) The dependence of

energy on k⊥ and k+ is multiplicative and large energy can result from large k⊥

and/or small k+.

3.2 Scalar Field

The Lagrangian density expressed in light-front variables is [12]

L = ∂+φ∂−φ− 1

2
∂⊥φ.∂⊥φ− 1

2
µ2φ2 , (3.11)

The equation of motion is [
2∂+∂− − (∂⊥)2 + µ2

]
φ = 0. (3.12)

The quantized free scalar field can be written as

φ(x) =
1√
2π

∫ ∞
0+

dk−d
2k⊥√

2k+

[
a(k) e−ik.x + a†(k) eik.x

]
, (3.13)

The commutators are [
a(k), a†(k′)

]
= δ3(k − k′),

[a(k), a(k′)] =
[
a†(k), a†(k′)

]
= 0. (3.14)

3.3 Poincare Generators and Algebra

3.3.1 Lorentz Group

Let us first consider a pure boost along the negative 3-axis. The relationship between

space and time of two systems of coordinates, one S̃ in uniform motion along the
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negative 3-axis with speed v relative to other S is given by x̃0 = γ(x0 + βx3),

x̃3 = γ(x3 + βx0), with β = v
c

and γ = 1√
1−β2

. Introduce the parameter φ such that

γ = coshφ, βγ = sinhφ. In terms of the light-front variables, [12]

x̃+ = eφx+, x̃− = e−φx−. (3.15)

Thus boost along the 3-axis becomes a scale transformation for the variables x̃+ and

x̃− and x+ = 0 is invariant under boost along the 3-axis.

Let us denote the three generators of boosts by Ki and the three generators of

rotations by J i in equal-time dynamics. Define E1 = −K1 + J2, E2 = −K2 − J1,

F 1 = −K1 − J2, and F 2 = −K2 + J1. The explicit expressions for the 6 generators

K3, E1, E2, J3, F 1, and F 2 in the finite dimensional representation are

K3 = −i


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 , E1 = −i


0 −1 0 0

−1 0 0 −1

0 0 0 0

0 1 0 0

 , (3.16)

E2 = −i


0 0 −1 0

0 0 0 0

−1 0 0 −1

0 0 1 0

 , J3 = −i


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 , (3.17)

F 1 = −i


0 −1 0 0

−1 0 0 1

0 0 0 0

0 −1 0 0

 , F 2 = −i


0 0 −1 0

0 0 0 0

−1 0 0 1

0 0 −1 0

 . (3.18)

Note that K3, E1, E2, and J3 leave x+ = 0 invariant and are kinematical generators

while F 1 and F 2 do not and are dynamical generators.

It follows that

[F 1, F 2] = 0, [J3, F i] = iεijF j. (3.19)

Thus J3, F 1 and F 2 form a closed algebra. Also

[E1, E2] = 0, [K3, Ei] = iEi. (3.20)

Thus K3, E1 and E2 also form a closed algebra.
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3.3.2 Algebra

From the Lagrangian density one may construct the stress tensor T µν and from the

stress tensor one may construct a four-momentum P µ and a generalized angular

momentum Lµν . [12, 13]

P µ =

∫
dx−d2x⊥ T+µ, (3.21)

Lµν =

∫
dx−d2x⊥[xν T+µ − xµ T+ν ]. (3.22)

Note that Lµν is antisymmetric and hence has six independent components. Poincare

algebra in terms of P µ and Lµν is

[P µ, P ν ] = 0, (3.23)

[P µ, Lρσ] = i[gµρP σ − gµσP ρ], (3.24)

[Lµν , Lρσ] = i[−gµρLνσ + gµσLνρ − gνσLµρ + gνρLµσ]. (3.25)

In light-front dynamics P− is the Hamiltonian and P+ and P i (i = 1, 2) are the

momenta. L−+ = K3 and L+i = Ei are the boosts. L12 = J3 and L−i = F i are the

rotations.

3.3.3 Example: Klein–Gordon (1+1)

The Boost operator (L+−) will be, [13]

L+− =

∫
dx−

(
x+T+− − x−T++

)
,

L+− = x+P− −
∫
dx−

(
x−T++

)
, (3.26)
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to evaluate
∫
dx− (x−T++), let’s find the space-time evaluation of a(k−) in Heisen-

berg’s Picture. [10]

a(k−, xµ) = eiPµx
µ

a(k−, 0)e−iPµx
µ

,

a(k−, x−) = eiP−.x
−
a(k−, 0)e−iP−.x

−
,

∂

∂x−
a(k−, x−) = [iP− e

iP−.x−a(k−, 0)e−iP−.x
−

]− [eiP−.x
−
a(k−, 0) iP− e

−iP−.x− ] ,

∂

∂x−
a(k−, x−) = ieiP−.x

− [
P−, a(k−, 0)

]
e−iP−.x

1

,

= −ik− eiP−.x
−
a(k−, 0)e−iP−.x

−
= −ik− a(k−, x−) ,

=⇒ a(k−, x−) = e−ik−.x
−
a(k−, 0) ,

=⇒ a(k−, 0) = eik−.x
−
a(k−, x−) ,

=⇒ ∂

∂k−
a(k−, 0) = ix− eik−.x

−
a(k−, x−) = ix− a(k−, 0) ,

we found that
∫
dx−T++ =

∫
dk− k+

(
a†(k−,m)a(k−,m)

)
, so∫

dx−
(
x−T++

)
= −i

∫
dk− k+

(
a†(k−,m)

∂

∂k−
a(k−,m)

)
, (3.27)

then,

L+− = x+P− −
∫
dx−

(
x−T++

)
,

L+− = x+P− + i

∫
dk− k+

(
a†(k−,m)

∂

∂k−
a(k−,m)

)
, (3.28)

L−+ = −i
∫
dk− k+

(
a†(k−,m)

∂

∂k−
a(k−,m)

)
− x+P− , (3.29)

at x+ = 0 ,

L+− = i

∫
dk− k+

(
a†(k−,m)

∂

∂k−
a(k−,m)

)
, (3.30)

L−+ = −i
∫
dk− k+

(
a†(k−,m)

∂

∂k−
a(k−,m)

)
. (3.31)
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let’s find,

[L+−, a(k−)] = i

∫
dk−′ k+′

[(
a†(k−′,m)

∂

∂k′−
a(k−′,m)

)
, a(k−)

]
,

[L+−, a(k−)] = −ik+ ∂

∂k−
a(k−,m) ,

[L+−, a†(k−)] = i

∫
dk−′ k+′

[(
a†(k−′,m)

∂

∂k′−
a(k−′,m)

)
, a†(k−)

]
,

= ik+′
∫
dk−′a†(k−′,m)

∂

∂k′−
δ(k− − k−′) ,

[L+−, a†(k−)] = −ik+ ∂

∂k−
a†(k−,m) .

Now, the commutation relation between J+− and P µ will be, (use, gµν =

0 1

1 0

 =

gµν)[
L+−, P+

]
=

∫
dk−

[(
L+−) , (k+ a†(k−,m)a(k−,m)

)]
,

=

∫
dk− k+

(
a†(k−,m)

[(
L+−) , a(k−,m)

]
+
[(
L+−) , a†(k−,m)

]
a(k−,m)

)
,

=− i
∫
dk− k+ k+

(
a†(k−,m)

[
∂

∂k−
a(k−,m)

]
+

[
∂

∂k−
a†(k−,m)

]
a(k−,m)

)
,

=− i
∫
dk− k+ k+

∂

∂k−

(
a†(k−,m)a(k−,m)

)
= i

∫
dk− k+

∂k+

∂k−

(
a†(k−,m)a(k−,m)

)
,

=i

∫
dk− k+

∂k+

∂k+
(
a†(k−,m)a(k−,m)

)
= i

∫
dk−k+

(
a†(k−)a(k−)

)
= i P+ ,[

L+−, P+
]

= i P+ X ,[
L+−, P−

]
=

∫
dk−

[(
L+−) , (k− a†(k−,m)a(k−,m)

)]
,

=

∫
dk− k−

(
a†(k−,m)

[(
L+−) , a(k−,m)

]
+
[(
L+−) , a†(k−,m)

]
a(k−,m)

)
,

=− i
∫
dk− k+ k−

(
a†(k−,m)

[
∂

∂k−
a(k−,m)

]
+

[
∂

∂k−
a†(k−,m)

]
a(k−,m)

)
,

=− i
∫
dk− k+ k−

∂

∂k−

(
a†(k−,m)a(k−,m)

)
= i

∫
dk− k+

∂k−

∂k+
(
a†(k−,m)a(k−,m)

)
,

=− i
∫
dk−

∂k+

∂k+
k−
(
a†(k−,m)a(k−,m)

)
= −i

∫
dk−k−

(
a†(k−)a(k−)

)
= −i P− ,[

L+−, P−
]

= −i P− X ,[
Lλσ, P µ

]
= i (gσµP λ − gλµP σ) X . (3.32)
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Chapter 4

Interpolation between IFD and

LFD

In this chapter, we will define the initial surface to interpolate from x0 = 0 to

x0 + x1 = 0. The angle which the initial or quantization surface makes relative

to x0 = 0 will be left as a parameter. Lorentz-invariant quantities such as masses

must in the end be independent of this angle, while in intermediate stages this angle

may be chosen for convenience. This Interpolation method was first introduced by

Kent Hornbostel in 1992 [14]. Then Chueng-Ryong Ji [15–20] pioneered the idea of

connecting the instant form dynamics and the light-front dynamics and contributed

to utilizing the light cone in solving relativistic bound state and scattering problems.

4.1 Method of Interpolation Angle

In this section, we briefly review the interpolation angle method. To trace the forms

of relativistic quantum field theory between IFD and LFD, we take the following

convention of the space-time coordinates to define the interpolation angle [14–20].

The interpolating space-time coordinates may be defined as a transformation from

the ordinary space-time coordinates, xµ̂ = Rµ̂
νx

ν , i.e.
x+̂

x1̂

x2̂

x−̂

 =


cos δ 0 0 sin δ

0 1 0 0

0 0 1 0

sin δ 0 0 − cos δ




x0

x1

x2

x3

 , (4.1)
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in which the interpolation angle is allowed to run from 0 through 45◦, 0 ≤ δ ≤ π
4
.

In this interpolating basis, the metric becomes

gµ̂ν̂ = gµ̂ν̂ =


C 0 0 S

0 −1 0 0

0 0 −1 0

S 0 0 −C

 , (4.2)

where S = sin 2δ and C = cos 2δ. The covariant interpolating space-time coordinates

are then easily obtained as

xµ̂ = gµ̂ν̂x
ν̂ =


x+̂

x1̂

x2̂

x−̂

 =


cos δ 0 0 − sin δ

0 −1 0 0

0 0 −1 0

sin δ 0 0 cos δ




x0

x1

x2

x3

 . (4.3)

The lower index variables x+ and x− are related to the upper index variables as

x+ = g+µx
µ = Cx+ +Sx− and x− = g−µx

µ = −Cx−+Sx+, denoting C = cos2δ and

S = sin2δ and realizing g++ = −g−− = cos2δ = C and g+− = g−+ = sin2δ = S. All

the indices with the wide-hat notation signify the variables with the interpolation

angle δ. For the limit δ → 0 we have x+ = x0 and x− = −x3 so that we recover usual

space-time coordinates although the z-axis is inverted while for the other extreme

limit, δ → π
4

we have x± = (x0±x3)/
√

2 ≡ x± which leads to the standard light-front

coordinates. Since the perpendicular components remain the same (xĵ = xj, xĵ =

xj, j = 1, 2), we will omit the “ˆ” notation unless necessary from now on for the

perpendicular indices j = 1, 2 in a four-vector. Of course, the same interpolation

applies to the four-momentum variables too as it applies to all four-vectors.

The same transformations also apply to the momentum: [16]

P +̂ = P 0 cos δ + P 3 sin δ, (4.4a)

P −̂ = P 0 sin δ − P 3 cos δ, (4.4b)

P+̂ = P 0 cos δ − P 3 sin δ, (4.4c)

P−̂ = P 0 sin δ + P 3 cos δ. (4.4d)

Since the perpendicular components remain the same (aĵ = aj, aĵ = aj, j = 1, 2),

we will omit the “ˆ” notation unless necessary from now on for the perpendicular

indices j = 1, 2 in a four-vector.
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Using gµ̂ν̂ and gµ̂ν̂ , we see that the covariant and contravariant components are

related by

a+̂ = Ca+̂ + Sa−̂; a+̂ = Ca+̂ + Sa−̂ (4.5)

a−̂ = Sa+̂ − Ca−̂; a−̂ = Sa+̂ − Ca−̂

aj = −aj, (j = 1, 2).

The inner product of two four-vectors must be interpolation angle independent

as one can verify

aµ̂bµ̂ = (a+̂b+̂ − a−̂b−̂)C + (a+̂b−̂ + a−̂b+̂)S− a1b1 − a2b2

= aµbµ. (4.6)

In particular, we have the energy-momentum dispersion relation given by

P µ̂Pµ̂ = P 2
+̂C− P

2
−̂C + 2P+̂P−̂S−P2

⊥. (4.7)

4.2 Poincaré Matrix

The Poincaré matrix [15,16]

Lµν =


0 K1 K2 K3

−K1 0 J3 −J2

−K2 −J3 0 J1

−K3 J2 −J1 0

 , (4.8)

transforms as well, so that

Lµ̂ν̂ = Rµ̂
αL

αβRν̂
β =


0 E 1̂ E 2̂ −K3

−E 1̂ 0 J3 −F 1̂

−E 2̂ −J3 0 −F 2̂

K3 F 1̂ F 2̂ 0

 , (4.9)

and

Lµ̂ν̂ = gµ̂α̂L
α̂β̂gβ̂ν̂ =


0 D1̂ D2̂ K3

−D1̂ 0 J3 −K1̂

−D2̂ −J3 0 −K2̂

−K3 K1̂ K2̂ 0

 , (4.10)
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where

E 1̂ = J2 sin δ +K1 cos δ, K1̂ = −K1 sin δ − J2 cos δ,

E 2̂ = K2 cos δ − J1 sin δ, K2̂ = J1 cos δ −K2 sin δ,

F 1̂ = K1 sin δ − J2 cos δ, D1̂ = −K1 cos δ + J2 sin δ,

F 2̂ = K2 sin δ + J1 cos δ, D2̂ = −J1 sin δ −K2 cos δ. (4.11)

The interpolating E ĵ and F ĵ will coincide with the usual Ej and F j of LFD in the

limit δ = π/4. Note here that the “ˆ” notation is reinstated for 1, 2 to emphasize

the angle δ dependence and that the position of the indices on K, J,E, F,D,K won’t

matter as they are not the four-vectors: i.e. E1̂ = E 1̂, etc. Of course, Lµ̂ν̂ and Lµ̂ν̂

should be distinguished in any case.

4.3 Interpolating Poincaré Algebra

In this interpolating basis, the metric becomes

gµ̂ν̂ = gµ̂ν̂ =


C 0 0 S

0 −1 0 0

0 0 −1 0

S 0 0 −C

 , (4.12)

The Poincaré algebra (Contra-variant form) in this interpolating basis is given by

[
P µ̂, P ν̂

]
= 0,[

P ρ̂, Lµ̂ν̂
]

= i
(
gρ̂µ̂P ν̂ − gρ̂ν̂P µ̂

)
,[

Lα̂β̂, Lρ̂σ̂
]

= −i
(
gβ̂σ̂Lα̂ρ̂ − gβ̂ρ̂Lα̂σ̂ + gα̂ρ̂Lβ̂σ̂ − gα̂σ̂Lβ̂ρ̂

)
. (4.13)

A comprehensive list of the 45 commutation relations among the contra-variant and

co-variant components of the Poincare´ generators is presented below: [15]

Poincaré algebra: Contra-variant form

1)
[
P µ̂, P ν̂

]
= 0
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P µ̂ are the Energy and Momenta.[
P +̂, P 1̂

]
= 0 ,[

P +̂, P 2̂
]

= 0 ,[
P +̂, P −̂

]
= 0 ,[

P 1̂, P 2̂
]

= 0 ,[
P −̂, P 1̂

]
= 0 ,[

P −̂, P 2̂
]

= 0 .

2)
[
P ρ̂, Lµ̂ν̂

]
= i
(
gρ̂µ̂P ν̂ − gρ̂ν̂P µ̂

)
Lµ̂ν̂ are the Angular Momenta. (Where, L−̂+̂ = K 3̂ is the Boost, L+̂î = E î are

the Transverse Boosts , L1̂2̂ = J 3̂ is the Rotation, L−̂î = F î are the Transverse

Rotations).[
P +̂, L−̂+̂

]
=
[
P +̂, K 3̂

]
= i
(
g+̂−̂P +̂ − g+̂+̂P −̂

)
= i
(
SP +̂ − CP −̂

)
= iP−̂ ,[

P +̂, L+̂1̂
]

=
[
P +̂, E 1̂

]
= i
(
g+̂+̂P 1̂ − g+̂1̂P +̂

)
= iCP 1̂ ,[

P +̂, L+̂2̂
]

=
[
P +̂, E 2̂

]
= i
(
g+̂+̂P 2̂ − g+̂2̂P +̂

)
= iCP 2̂ ,[

P +̂, L1̂2̂
]

=
[
P +̂, J 3̂

]
= i
(
g+̂1̂P 2̂ − g+̂2̂P 1̂

)
= 0 ,[

P +̂, L−̂1̂
]

=
[
P +̂, F 1̂

]
= i
(
g+̂−̂P 1̂ − g+̂1̂P −̂

)
= iSP 1̂ ,[

P +̂, L−̂2̂
]

=
[
P +̂, F 2̂

]
= i
(
g+̂−̂P 2̂ − g+̂2̂P −̂

)
= iSP 2̂ ,[

P 1̂, L−̂+̂
]

=
[
P 1̂, K 3̂

]
= i
(
g1̂−̂P +̂ − g1̂+̂P −̂

)
= 0 ,[

P 1̂, L+̂1̂
]

=
[
P 1̂, E 1̂

]
= i
(
g1̂+̂P 1̂ − g1̂1̂P +̂

)
= iP +̂ = i (CP+̂ + SP−̂) ,[

P 1̂, L+̂2̂
]

=
[
P 1̂, E 2̂

]
= i
(
g1̂+̂P 2̂ − g1̂2̂P +̂

)
= 0 ,[

P 1̂, L1̂2̂
]

=
[
P 1̂, J 3̂

]
= i
(
g1̂1̂P 2̂ − g1̂2̂P 1̂

)
= −iP 2̂ ,[

P 1̂, L−̂1̂
]

=
[
P 1̂, F 1̂

]
= i
(
g1̂−̂P 1̂ − g1̂1̂P −̂

)
= iP −̂ = i (SP+̂ − CP−̂) ,[

P 1̂, L−̂2̂
]

=
[
P 1̂, F 2̂

]
= i
(
g1̂−̂P 2̂ − g1̂2̂P −̂

)
= 0 ,[

P 2̂, L−̂+̂
]

=
[
P 2̂, K 3̂

]
= i
(
g2̂−̂P +̂ − g2̂+̂P −̂

)
= 0 ,[

P 2̂, L+̂1̂
]

=
[
P 2̂, E 1̂

]
= i
(
g2̂+̂P 1̂ − g2̂1̂P +̂

)
= 0 ,
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[
P 2̂, L+̂2̂

]
=
[
P 2̂, E 2̂

]
= i
(
g2̂+̂P 2̂ − g2̂2̂P +̂

)
= iP +̂ = i (CP+̂ + SP−̂) ,[

P 2̂, L1̂2̂
]

=
[
P 2̂, J 3̂

]
= i
(
g2̂1̂P 2̂ − g2̂2̂P 1̂

)
= iP 1̂ ,[

P 2̂, L−̂1̂
]

=
[
P 2̂, F 1̂

]
= i
(
g2̂−̂P 1̂ − g2̂1̂P −̂

)
= 0 ,[

P 2̂, L−̂2̂
]

=
[
P 2̂, F 2̂

]
= i
(
g2̂−̂P 2̂ − g2̂2̂P −̂

)
= iP −̂ = i (SP+̂ − CP−̂) ,[

P −̂, L−̂+̂
]

=
[
P −̂, K 3̂

]
= i
(
g−̂−̂P +̂ − g−̂+̂P −̂

)
= i
(
−CP +̂ − SP −̂

)
= −iP+̂ ,[

P −̂, L+̂1̂
]

=
[
P −̂, E 1̂

]
= i
(
g−̂+̂P 1̂ − g−̂1̂P +̂

)
= iSP 1̂ ,[

P −̂, L+̂2̂
]

=
[
P −̂, E 2̂

]
= i
(
g−̂+̂P 2̂ − g−̂2̂P +̂

)
= iSP 2̂ ,[

P −̂, L1̂2̂
]

=
[
P −̂, J 3̂

]
= i
(
g−̂1̂P 2̂ − g−̂2̂P 1̂

)
= 0 ,[

P −̂, L−̂1̂
]

=
[
P −̂, F 1̂

]
= i
(
g−̂−̂P 1̂ − g−̂1̂P −̂

)
= −iCP 1̂ ,[

P −̂, L−̂2̂
]

=
[
P −̂, F 2̂

]
= i
(
g−̂−̂P 2̂ − g−̂2̂P −̂

)
= −iCP 2̂ .

3)
[
Lα̂β̂, Lρ̂σ̂

]
= −i

(
gβ̂σ̂Lα̂ρ̂ − gβ̂ρ̂Lα̂σ̂ + gα̂ρ̂Lβ̂σ̂ − gα̂σ̂Lβ̂ρ̂

)
Lµ̂ν̂ are the Angular Momenta. (Where, L−̂+̂ = K 3̂ is the Boost, L+̂î = E î are

the Transverse Boosts , L1̂2̂ = J 3̂ is the Rotation, L−̂î = F î are the Transverse

Rotations).[
L−̂+̂, L+̂1̂

]
=
[
K 3̂, E 1̂

]
= −i

(
g+̂1̂L−̂+̂ − g+̂+̂L−̂1̂ + g−̂+̂L+̂1̂ − g−̂1̂L+̂+̂

)
= iCF 1̂ − iSE 1̂ ,[

L−̂+̂, L+̂2̂
]

=
[
K 3̂, E 2̂

]
= −i

(
g+̂2̂L−̂+̂ − g+̂+̂L−̂2̂ + g−̂+̂L+̂2̂ − g−̂2̂L+̂+̂

)
= iCF 2̂ − iSE 2̂ ,[

L−̂+̂, L1̂2̂
]

=
[
K 3̂, J 3̂

]
= −i

(
g+̂2̂L−̂1̂ − g+̂1̂L−̂2̂ + g−̂1̂L+̂2̂ − g−̂2̂L+̂1̂

)
= 0 ,[

L−̂+̂, L−̂1̂
]

=
[
K 3̂, F 1̂

]
= −i

(
g+̂1̂L−̂−̂ − g+̂−̂L−̂1̂ + g−̂−̂L+̂1̂ − g−̂1̂L+̂−̂

)
= iSF 1̂ + iCE 1̂ ,[

L−̂+̂, L−̂2̂
]

=
[
K 3̂, F 2̂

]
= −i

(
g+̂2̂L−̂−̂ − g+̂−̂L−̂2̂ + g−̂−̂L+̂2̂ − g−̂2̂L+̂−̂

)
= iSF 2̂ + iCE 2̂ ,[

L+̂1̂, L+̂2̂
]

=
[
E 1̂, E 2̂

]
= −i

(
g1̂2̂L+̂+̂ − g1̂+̂L+̂2̂ + g+̂+̂L1̂2̂ − g+̂2̂L1̂+̂

)
= −iCJ 3̂ ,[

L+̂1̂, L1̂2̂
]

=
[
E 1̂, J 3̂

]
= −i

(
g1̂2̂L+̂1̂ − g1̂1̂L+̂2̂ + g+̂1̂L1̂2̂ − g+̂2̂L1̂1̂

)
= −iE 2̂ ,[

L+̂1̂, L−̂1̂
]

=
[
E 1̂, F 1̂

]
= −i

(
g1̂1̂L+̂−̂ − g1̂−̂L+̂1̂ + g+̂−̂L1̂1̂ − g+̂1̂L1̂−̂

)
= −iK 3̂ ,[

L+̂1̂, L−̂2̂
]

=
[
E 1̂, F 2̂

]
= −i

(
g1̂2̂L+̂−̂ − g1̂−̂L+̂2̂ + g+̂−̂L1̂2̂ − g+̂2̂L1̂−̂

)
= −iSJ 3̂ ,[

L+̂2̂, L1̂2̂
]

=
[
E 2̂, J 3̂

]
= −i

(
g2̂2̂L+̂1̂ − g2̂1̂L+̂2̂ + g+̂1̂L2̂2̂ − g+̂2̂L2̂1̂

)
= iE 1̂ ,

37



[
L+̂2̂, L−̂1̂

]
=
[
E 2̂, F 1̂

]
= −i

(
g2̂1̂L+̂−̂ − g2̂−̂L+̂1̂ + g+̂−̂L2̂1̂ − g+̂1̂L2̂−̂

)
= iSJ 3̂ ,[

L+̂2̂, L−̂2̂
]

=
[
E 2̂, F 2̂

]
= −i

(
g2̂2̂L+̂−̂ − g2̂−̂L+̂2̂ + g+̂−̂L2̂2̂ − g+̂2̂L2̂−̂

)
= −iK 3̂ ,[

L1̂2̂, L−̂1̂
]

=
[
J 3̂, F 1̂

]
= −i

(
g2̂1̂L1̂−̂ − g2̂−̂L1̂1̂ + g1̂−̂L2̂1̂ − g1̂1̂L2̂−̂

)
= iF 2̂ ,[

L1̂2̂, L−̂2̂
]

=
[
J 3̂, F 2̂

]
= −i

(
g2̂2̂L1̂−̂ − g2̂−̂L1̂2̂ + g1̂−̂L2̂2̂ − g1̂2̂L2̂−̂

)
= −iF 1̂ ,[

L−̂1̂, L−̂2̂
]

=
[
F 1̂, F 2̂

]
= −i

(
g1̂2̂L−̂−̂ − g1̂−̂L−̂2̂ + g−̂−̂L1̂2̂ − g−̂2̂L1̂−̂

)
= iCJ 3̂ .

Poincaré algebra: Co-variant form

1)[Pµ̂, Pν̂ ] = 0

P µ̂ are the Energy and Momenta.

[P+̂, P1̂] = 0 ,

[P+̂, P2̂] = 0 ,

[P+̂, P−̂] = 0 ,

[P1̂, P2̂] = 0 ,

[P−̂, P1̂] = 0 ,

[P−̂, P2̂] = 0 .

2) [Pρ̂, Lµ̂ν̂ ] = i (gρ̂µ̂Pν̂ − gρ̂ν̂Pµ̂)

Lµ̂ν̂ are the Angular Momenta. (Where, L+̂−̂ = −L−̂+̂ = K 3̂,L+̂î = Dî =

−SF î − CE î, L1̂2̂ = J 3̂, and L−̂î = Kî = CF î − SE î).

[P+̂, L+̂−̂] =
[
P+̂, K

3̂
]

= i (g+̂+̂P−̂ − g+̂−̂P+̂) = i (CP−̂ − SP+̂) ,[
P+̂, L+̂1̂

]
=
[
P+̂,D1̂

]
= i
(
g+̂+̂P1̂ − g+̂1̂P+̂

)
= iCP1̂ ,[

P+̂, L+̂2̂

]
=
[
P+̂,D2̂

]
= i
(
g+̂+̂P2̂ − g+̂2̂P+̂

)
= iCP2̂ ,

[P+̂, L1̂2̂] =
[
P+̂, J

3̂
]

= i
(
g+̂1̂P2̂ − g+̂2̂P1̂

)
= 0 ,[

P+̂, L−̂1̂
]

=
[
P+̂,K1̂

]
= i
(
g+̂−̂P1̂ − g+̂1̂P−̂

)
= iSP1̂ ,[

P+̂, L−̂2̂
]

=
[
P+̂,K2̂

]
= i
(
g+̂−̂P2̂ − g+̂2̂P−̂

)
= iSP2̂ ,
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[P1̂, L+̂−̂] =
[
P1̂, K

3̂
]

= i
(
g1̂+̂P−̂ − g1̂−̂P+̂

)
= 0 ,[

P1̂, L+̂1̂

]
=
[
P1̂,D1̂

]
= i
(
g1̂+̂P1̂ − g1̂1̂P+̂

)
= iP+̂ ,[

P1̂, L+̂2̂

]
=
[
P1̂,D2̂

]
= i
(
g1̂+̂P2̂ − g1̂2̂P+̂

)
= 0 ,

[P1̂, L1̂2̂] =
[
P1̂, J

3̂
]

= i (g1̂1̂P2̂ − g1̂2̂P1̂) = −iP2̂ ,[
P1̂, L−̂1̂

]
=
[
P1̂,K1̂

]
= i
(
g1̂−̂P1̂ − g1̂1̂P−̂

)
= iP−̂ ,[

P1̂, L−̂2̂
]

=
[
P1̂,K2̂

]
= i
(
g1̂−̂P2̂ − g1̂2̂P−̂

)
= 0 ,

[P2̂, L+̂−̂] =
[
P2̂, K

3̂
]

= i
(
g2̂+̂P−̂ − g2̂−̂P+̂

)
= 0 ,[

P2̂, L+̂1̂

]
=
[
P2̂,D1̂

]
= i
(
g2̂+̂P1̂ − g2̂1̂P+̂

)
= 0 ,[

P2̂, L+̂2̂

]
=
[
P2̂,D2̂

]
= i
(
g2̂+̂P2̂ − g2̂2̂P+̂

)
= iP+̂ ,

[P2̂, L1̂2̂] =
[
P2̂, J

3̂
]

= i (g2̂1̂P2̂ − g2̂2̂P1̂) = iP1̂ ,[
P2̂, L−̂1̂

]
=
[
P2̂,K1̂

]
= i
(
g2̂−̂P1̂ − g2̂1̂P−̂

)
= 0 ,[

P2̂, L−̂2̂
]

=
[
P2̂,K2̂

]
= i
(
g2̂−̂P2̂ − g2̂2̂P−̂

)
= iP−̂ ,

[P−̂, L+̂−̂] =
[
P−̂, K

3̂
]

= i (g−̂+̂P−̂ − g−̂−̂P+̂) = i (SP−̂ + CP+̂) ,[
P−̂, L+̂1̂

]
=
[
P−̂,D1̂

]
= i
(
g−̂+̂P1̂ − g−̂1̂P+̂

)
= iSP1̂ ,[

P−̂, L+̂2̂

]
=
[
P−̂,D2̂

]
= i
(
g−̂+̂P2̂ − g−̂2̂P+̂

)
= iSP2̂ ,

[P−̂, L1̂2̂] =
[
P−̂, J

3̂
]

= i
(
g−̂1̂P2̂ − g−̂2̂P1̂

)
= 0 ,[

P−̂, L−̂1̂
]

=
[
P−̂,K1̂

]
= i
(
g−̂−̂P1̂ − g−̂1̂P−̂

)
= −iCP1̂ ,[

P−̂, L−̂2̂
]

=
[
P−̂,K2̂

]
= i
(
g−̂−̂P2̂ − g−̂2̂P−̂

)
= −iCP2̂ .

3)
[
Lα̂β̂, Lρ̂σ̂

]
= −i

(
gβ̂σ̂Lα̂ρ̂ − gβ̂ρ̂Lα̂σ̂ + gα̂ρ̂Lβ̂σ̂ − gα̂σ̂Lβ̂ρ̂

)

[
L−̂+̂, L+̂1̂

]
= −

[
K 3̂,D1̂

]
= −i

(
g+̂1̂L−̂+̂ − g+̂+̂L−̂1̂ + g−̂+̂L+̂1̂ − g−̂1̂L+̂+̂

)
= iCK1̂ − iSD1̂ ,[

L−̂+̂, L+̂2̂

]
= −

[
K 3̂,D2̂

]
= −i

(
g+̂2̂L−̂+̂ − g+̂+̂L−̂2̂ + g−̂+̂L+̂2̂ − g−̂2̂L+̂+̂

)
= iCK2̂ − iSD2̂ ,

[L−̂+̂, L1̂2̂] = −
[
K 3̂, J 3̂

]
= −i

(
g+̂2̂L−̂1̂ − g+̂1̂L−̂2̂ + g−̂1̂L+̂2̂ − g−̂2̂L+̂1̂

)
= 0 , ,[

L−̂+̂, L−̂1̂
]

= −
[
K 3̂,K1̂

]
= −i

(
g+̂1̂L−̂−̂ − g+̂−̂L−̂1̂ + g−̂−̂L+̂1̂ − g−̂1̂L+̂−̂

)
= iSK1̂ + iCD1̂ ,
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[
L−̂+̂, L−̂2̂

]
= −

[
K 3̂,K2̂

]
= −i

(
g+̂2̂L−̂−̂ − g+̂−̂L−̂2̂ + g−̂−̂L+̂2̂ − g−̂2̂L+̂−̂

)
= iSK2̂ + iCD2̂ ,[

L+̂1̂, L+̂2̂

]
=
[
D1̂,D2̂

]
= −i

(
g1̂2̂L+̂+̂ − g1̂+̂L+̂2̂ + g+̂+̂L1̂2̂ − g+̂2̂L1̂+̂

)
= −iCJ 3̂ ,[

L+̂1̂, L1̂2̂

]
=
[
D1̂, J 3̂

]
= −i

(
g1̂2̂L+̂1̂ − g1̂1̂L+̂2̂ + g+̂1̂L1̂2̂ − g+̂2̂L1̂1̂

)
= −iD2̂ ,[

L+̂1̂, L−̂1̂
]

=
[
D1̂,K1̂

]
= −i

(
g1̂1̂L+̂−̂ − g1̂−̂L+̂1̂ + g+̂−̂L1̂1̂ − g+̂1̂L1̂−̂

)
= −iK 3̂ ,[

L+̂1̂, L−̂2̂
]

=
[
D1̂,K2̂

]
= −i

(
g1̂2̂L+̂−̂ − g1̂−̂L+̂2̂ + g+̂−̂L1̂2̂ − g+̂2̂L1̂−̂

)
= −iSJ 3̂ ,[

L+̂2̂, L1̂2̂

]
=
[
D2̂, J 3̂

]
= −i

(
g2̂2̂L+̂1̂ − g2̂1̂L+̂2̂ + g+̂1̂L2̂2̂ − g+̂2̂L2̂1̂

)
= iD1̂ ,[

L+̂2̂, L−̂1̂
]

=
[
D2̂,K1̂

]
= −i

(
g2̂1̂L+̂−̂ − g2̂−̂L+̂1̂ + g+̂−̂L2̂1̂ − g+̂1̂L2̂−̂

)
= iSJ 3̂ ,[

L+̂2̂, L−̂2̂
]

=
[
D2̂,K2̂

]
= −i

(
g2̂2̂L+̂−̂ − g2̂−̂L+̂2̂ + g+̂−̂L2̂2̂ − g+̂2̂L2̂−̂

)
= −iK 3̂ ,[

L1̂2̂, L−̂1̂
]

=
[
J 3̂,K1̂

]
= −i

(
g2̂1̂L1̂−̂ − g2̂−̂L1̂1̂ + g1̂−̂L2̂1̂ − g1̂1̂L2̂−̂

)
= iK2̂ ,[

L1̂2̂, L−̂2̂
]

=
[
J 3̂,K2̂

]
= −i

(
g2̂2̂L1̂−̂ − g2̂−̂L1̂2̂ + g1̂−̂L2̂2̂ − g1̂2̂L2̂−̂

)
= −iK1̂ ,[

L−̂1̂, L−̂2̂
]

=
[
K1̂,K2̂

]
= −i

(
g1̂2̂L−̂−̂ − g1̂−̂L−̂2̂ + g−̂−̂L1̂2̂ − g−̂2̂L1̂−̂

)
= iCJ 3̂ .

4.4 Comprehensive Table

The following tables summarizes the commutation relations between the Poincare

generators in Interpolation form.

4.4.1 Contra-variant form

P +̂ P 1̂ P 2̂ K 3̂ E 1̂ E 2̂ J 3̂ F 1̂ F 2̂ P −̂

P +̂ 0 0 0 iP−̂ iCP 1̂ iCP 2̂ 0 iSP 1̂ iSP 2̂ 0

P 1̂ 0 0 0 0 iCP+̂ + iSP−̂ 0 −iP 2̂ iSP+̂ − iCP−̂ 0 0

P 2̂ 0 0 0 0 0 iCP+̂ + iSP−̂ iP 1̂ 0 iSP+̂ − iCP−̂ 0

K 3̂ −iP−̂ 0 0 0 iCF 1̂ − iSE 1̂ iCF 2̂ − iSE 2̂ 0 iSF 1̂ + iCE 1̂ iSF 2̂ + iCE 2̂ iP+̂

E 1̂ −iCP 1̂ −iCP+̂ − iSP−̂ 0 −iCF 1̂ + iSE 1̂ 0 −iCJ 3̂ −iE 2̂ −iK 3̂ −iSJ 3̂ −iSP 1̂

E 2̂ −iCP 2̂ 0 −iCP+̂ − iSP−̂ −iCF 2̂ + iSE 2̂ iCJ 3̂ 0 iE 1̂ iSJ 3̂ −iK 3̂ −iSP 2̂

J 3̂ 0 iP 2̂ −iP 1̂ 0 iE 2̂ −iE 1̂ 0 iF 2̂ −iF 1̂ 0

F 1̂ −iSP 1̂ −iSP+̂ + iCP−̂ 0 −iSF 1̂ − iCE 1̂ iK 3̂ −iSJ 3̂ −iF 2̂ 0 iCJ 3̂ iCP 1̂

F 2̂ −iSP 2̂ 0 −iSP+̂ + iCP−̂ −iSF 2̂ − iCE 2̂ iSJ 3̂ iK 3̂ iF 1̂ −iCJ 3̂ 0 iCP 2̂

P −̂ 0 0 0 −iP+̂ iSP 1̂ iSP 2̂ 0 −iCP 1̂ −iCP 2̂ 0

Where, the P µ̂ are Energy and Momenta (P +̂ = (CP+̂ + SP−̂), P î = −Pî , P −̂ =

(SP+̂ − CP−̂)), the Lµ̂ν̂ are Angular Momenta. (here, L−̂+̂ = K 3̂ is Boost, L+̂î = E î

are Transverse Boosts , L1̂2̂ = J 3̂ is Rotation, L−̂î = F î are Transverse Rotations).
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4.4.2 Co-variant form

P+̂ P1̂ P2̂ K 3̂ D1̂ D2̂ J 3̂ K1̂ K2̂ P−̂

P+̂ 0 0 0 i (CP−̂ − SP+̂) iCP1̂ iCP2̂ 0 iSP1̂ iSP2̂ 0

P1̂ 0 0 0 0 iP+̂ 0 −iP2̂ iP−̂ 0 0

P2̂ 0 0 0 0 0 iP+̂ iP1̂ 0 iP−̂ 0

K 3̂ −i (CP−̂ − SP+̂) 0 0 0 iSD1̂ − iCK1̂ iSD2̂ − iCK2̂ 0 −iSK1̂ − iCD1̂ −iSK2̂ − iCD2̂ −i (SP−̂ + CP+̂)

D1̂ −iCP1̂ −iP+̂ 0 −iSD1̂ + iCK1̂ 0 −iCJ 3̂ −iD2̂ −iK 3̂ −iSJ 3̂ −iSP1̂

D2̂ −iCP2̂ 0 −iP+̂ −iSD2̂ + iCK2̂ iCJ 3̂ 0 iD1̂ iSJ 3̂ −iK 3̂ −iSP2̂

J 3̂ 0 iP2̂ −iP1̂ 0 iD2̂ −iD1̂ 0 iK2̂ −iK1̂ 0

K1̂ −iSP1̂ −iP−̂ 0 iSK1̂ + iCD1̂ iK 3̂ −iSJ 3̂ −iK2̂ 0 iCJ 3̂ iCP1̂

K2̂ −iSP2̂ 0 −iP−̂ iSK2̂ + iCD2̂ iSJ 3̂ iK 3̂ iK1̂ −iCJ 3̂ 0 iCP2̂

P−̂ 0 0 0 i (SP−̂ + CP+̂) iSP1̂ iSP2̂ 0 −iCP1̂ −iCP2̂ 0

(Where, L+̂−̂ = −L−̂+̂ = K 3̂,L+̂î = Dî = −SF î − CE î, L1̂2̂ = J 3̂, and L−̂î = Kî =

CF î − SE î).

Among the ten Poincaré generators, the six generators (K1̂,K2̂, J3, P1, P2, P−̂) are

always kinematic in the sense that the x+̂ = 0 plane is intact under the transfor-

mations generated by them. The operator K3 = M+̂−̂ is dynamical in the region

where 0 ≤ δ < π/4 but becomes kinematic in the light-front limit (δ = π/4). The

set of kinematic and dynamic generators depending on the interpolation angle are

summarized in following table. [15,16]

Interpolation angle Kinematic Dynamic

δ = 0 K1̂ = −J2,K2̂ = J1, J3, P 1, P 2, P 3 D1̂ = −K1,D2̂ = −K2, K3, P 0

0 ≤ δ < π/4 K1̂,K2̂, J3, P 1, P 2, P−̂ D1̂,D2̂, K3, P+̂

δ = π/4 K1̂ = −E1,K2̂ = −E2, J3, K3, P 1, P 2, P+ D1̂ = −F 1,D2̂ = −F 2, P−

4.4.3 Contra-variant form (IFD)

The following table summarizes the commutation relations (contra-variant form)

between the Poincare generators explicitly in Instant Form Dynamics (IFD) (when

interpolation angle, δ = 0),
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P 0 P 1 P 2 −K3 K1 K2 J3 J2 −J1 P 3

P 0 0 0 0 iP3 iP 1 iP 2 0 0 0 0

P 1 0 0 0 0 iP0 0 −iP 2 −iP3 0 0

P 2 0 0 0 0 0 iP0 iP 1 0 −iP3 0

−K3 −iP3 0 0 0 iJ2 −iJ1 0 iK1 iK2 iP0

K1 −iP 1 −iP0 0 −iJ2 0 −iJ3 −iK2 iK3 0 0

K2 −iP 2 0 −iP0 iJ1 iJ3 0 iK1 0 iK3 0

J3 0 iP 2 −iP 1 0 iK2 −iK1 0 −iJ1 −iJ2 0

J2 0 iP3 0 −iK1 −iK3 0 iJ1 0 iJ3 iP 1

−J1 0 0 +iP3 −iK2 0 −iK3 iJ2 −iJ3 0 iP 2

P 3 0 0 0 −iP0 0 0 0 −iP 1 −iP 2 0

4.4.4 Contra-variant form (LFD)

The following table summarizes the commutation relations (contra-variant form)

between the Poincare generators explicitly in Light-Front Dynamics (LFD) (when

interpolation angle, δ = π
4
),

P+ P 1 P 2 K3 E1 E2 J3 F 1 F 2 P−

P+ 0 0 0 iP− 0 0 0 iP 1 iP 2 0

P 1 0 0 0 0 iP− 0 −iP 2 iP+ 0

P 2 0 0 0 0 0 iP− iP 1 0 iP+ 0

K3 −iP− 0 0 0 −iE1 −iE2 0 iF 1 iF 2 iP+

E1 0 −iP− 0 iE1 0 0 −iE2 −iK3 −iJ3 −iP 1

E2 0 0 −iP− iE2 0 0 iE1 iJ3 −iK3 −iP 2

J3 0 iP 2 −iP 1 0 iE2 −iE1 0 iF 2 −iF 1 0

F 1 −iP 1 −iP+ 0 −iF 1 iK3 −iJ3 −iF 2 0 0 0

F 2 −iP 2 0 −iP+ −iF 2 iJ3 iK3 iF 1 0 0 0

P− 0 0 0 −iP+ iP 1 iP 2 0 0 0 0

4.4.5 Co-variant form (IFD)

The following table summarizes the commutation relations (co-variant form) be-

tween the Poincare generators explicitly in Instant Form Dynamics (IFD) (when

interpolation angle, δ = 0),
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P0 P1 P2 K3 −K1 −K2 J3 −J2 J1 P3

P0 0 0 0 iP3 iP1 iP2 0 0 0 0

P1 0 0 0 0 iP0 0 −iP2 iP3 0 0

P2 0 0 0 0 0 iP0 iP1 0 iP3 0

K3 −iP3 0 0 0 iJ2 −iJ1 0 iK1 iK2 −iP0

−K1 −iP1 −iP0 0 −iJ2 0 −iJ3 iK2 −iK3 0 0

−K2 −iP2 0 −iP0 iJ1 iJ3 0 −iK1 0 −iK3 0

J3 0 iP2 −iP1 0 −iK2 iK1 0 iJ1 iJ2 0

−J2 0 −iP3 0 −iK1 iK3 0 −iJ1 0 iJ3 iP1

J1 0 0 −iP3 −iK2 0 iK3 −iJ2 −iJ3 0 iP2

P3 0 0 0 iP0 i0 i0 0 −iP1 −iP2 0

4.4.6 Co-variant form (LFD)

The following table summarizes the commutation relations (co-variant form) be-

tween the Poincare generators explicitly in Light-Front Dynamics (LFD) (when in-

terpolation angle, δ = π
4
),

P+ P1 P2 K3 −F 1 −F 2 J3 −E1 −E2 P−

P+ 0 0 0 −iP+ 0 0 0 iP1 iP2 0

P1 0 0 0 0 iP+ 0 −iP2 iP− 0 0

P2 0 0 0 0 0 iP+ iP1 0 iP− 0

K3 iP+ 0 0 0 −iF 1 −iF 2 0 iE1 iE2 −iP−

−F 1 0 −iP+ 0 iF 1 0 0 iF 2 −iK3 −iJ3 −iP1

−F 2 0 0 −iP+ iF 2 0 0 −iF 1 iJ3 −iK3 −iP2

J3 0 iP2 −iP1 0 −iF 2 iF 1 0 −iE2 iE1 0

−E1 −iP1 −iP− 0 −iE1 iK3 −iJ3 iE2 0 0 0

−E2 −iP2 0 −iP− −iE2 iJ3 iK3 −iE1 0 0 0

P− 0 0 0 iP− iP1 iP2 0 0 0 0
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Chapter 5

Extension to Conformal Group

The set of conformal transformations manifestly forms a group, and it obviously has

the Poincaré group as a subgroup. We start by introducing conformal transforma-

tions and determining the condition for conformal invariance. Next, we are going to

consider flat space in d ≥ 3 dimensions and identify the conformal group. [5,21–24]

5.1 Conformal Transformations

Let us consider a flat space in d dimensions and transformations thereof which

locally preserve the angle between any two lines. A map φ is called a conformal

transformation, if the metric tensor satisfies φ ∗ g′ = Fg. Denoting x′ = φ(x), we

can express this condition in the following way: [5, 21–24]

g′ρσ(x′)
∂x′ρ

∂xµ
∂x′σ

∂xν
= F (x)gµν(x), (5.1)

where the positive function F (x) is called the scale factor and Einstein’s sum con-

vention is understood.We will always consider flat spaces with a constant metric

of the form ηµν = diag(1, ...,+1, ...). In this case, the condition for a conformal

transformation can be written as

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= F (x)ηµν . (5.2)

Note furthermore, for flat spaces the scale factor F (x) = 1 corresponds to the

Poincaré group consisting of translations and rotations, respectively Lorentz trans-

formations.
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5.2 Conditions for Conformal Invariance

Let us next study infinitesimal coordinate transformations [5, 21, 22] which up to

first order in a small parameter ε(x) << 1 read

x′ρ = xρ + ερ(x) +O(ε2). (5.3)

Noting that εµ = ηµνε
ν as well as that ηµν is constant, the left-hand side of Eq.

((5.2)) for such a transformation is determined to be of the followingform:

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= ηρσ

(
δρµ +

∂ερ

∂xµ
+O(ε2)

)(
δσν +

∂εσ

∂xν
+O(ε2)

)
,

= ηµν + ηµσ
∂εσ

∂xν
+ ηρν

∂ερ

∂xµ
+O(ε2) ,

= ηµν +
( ∂εµ
∂xν

+
∂εν
∂xµ

)
+O(ε2).

The question we want to ask now is, under what conditions is the transformation

((5.3)) conformal, i.e. when is Eq. ((5.2)) satisfied? From the last formula we see

that, up to first order in ε, we have to demand that

∂µεν + ∂νεµ = K(x)ηµν , (5.4)

where K(x) is some function. This function can be determined by tracing the

equation above with ηµν

ηµν
(
∂µεν + ∂νεµ

)
= K(x)ηµνηµν ,

2∂µεµ = K(x)d . (5.5)

Using this expression and solving for K(x), we find the following restriction on the

transformation ((5.3)) to be conformal:

∂µεν + ∂νεµ =
2

d
(∂.ε)ηµν . (5.6)

Finally, the scale factor can be read off as F (x) = 1 + 2
d
(∂.ε) +O(ε2).

5.3 Some Useful Relations

Let us now derive two useful equations for later purpose. First, we modify Eq.

((5.6)) by taking the derivative ∂ν and summing over ν. We then obtain [5, 21,22]

∂ν
(
∂µεν + ∂νεµ

)
=

2

d
∂ν(∂.ε)ηµν ,

∂µ(∂.ε) +�εµ =
2

d
∂µ(∂.ε) . (5.7)
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Furthermore, we take the derivative ∂ν to find

∂µ∂ν(∂.ε) +�∂νεµ =
2

d
∂µ∂ν(∂.ε) . (5.8)

After interchanging µ←→ ν, adding the resulting expression to Eq.((5.8)) and using

Eq.((5.6)) we get

2∂µ∂ν(∂.ε) +�
(2

d
(∂.ε)ηµν

)
=

4

d
∂µ∂ν(∂.ε) ,

=⇒
(
ηµν�+ (d− 2)∂µ∂ν

)
(∂.ε) = 0. (5.9)

Finally, contracting this equation with ηµν gives

(d− 1)�(∂.ε) = 0 . (5.10)

The second expression we want to use later is obtained by taking derivatives ∂ρ of

Eq. ((5.6)) and permuting indices

∂ρ∂µεν + ∂ρ∂νεµ =
2

d
ηµν∂ρ(∂.ε),

∂ν∂ρεµ + ∂µ∂ρεν =
2

d
ηρµ∂ν(∂.ε),

∂µ∂νερ + ∂ν∂µερ =
2

d
ηνρ∂µ(∂.ε),

Subtracting then the first line from the sum of the last two leads to

2∂µ∂νερ =
2

d
(−ηµν∂ρ + ηρµ∂ν + ηνρ∂µ)(∂.ε) . (5.11)

5.4 Conformal Group in d ≥ 3

After having obtained the condition for an infinitesimal transformations to be con-

formal, let us now determine the conformal group in the case of dimension d ≥ 3.

5.4.1 Conformal Transformations and Generators

We note that Eq.((5.10)) implies that (∂.ε) is at most linear in xµ, i.e. (∂.ε) =

A + Bµx
µ with A and Bµ constant. Then it follows that εµ is at most quadratic in

xν and so we can make the ansatz: [5, 21–24]

εµ = aµ + bµνx
ν + cµνρx

νxρ , (5.12)
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where aµ, bµν , cµνρ << 1 are constants and the latter is symmetric in the last two

indices, i.e. cµνρ = cµρν . We now study the various terms in Eq. ((5.12)) separately

because the constraints for conformal invariance have to be independent of the

position xµ.

• The constant term a in Eq. ((5.12)) is not constrained by Eq. ((5.6)). It

describes infinitesimal translations x′µ = xµ + aµ, for which the generator is

the momentum operator Pµ = −i∂µ .

• In order to study the term of Eq. ((5.12)) which is linear in x, we insert

((5.12)) into the condition ((5.6)) to find

bνµ + bµν =
2

d
(ηρσbσρ)ηµν ,

From this expression, we see that bµν can be split into a symmetric and an

antisymmetric part

bµν = αηµν +mµν ,

where mµν = −mνµ. The symmetric term αηµν describes infinitesimal scale

transformations x′µ = (1 + α)xµ with generator D = −ixµ∂µ . The antisym-

metric part mµν corresponds to infinitesimal rotations x′µ = (δµν +mµ
ν )xν with

generator being the angular momentum operator Lµν = i(xµ∂ν − xν∂µ) .

• The term of Eq. ((5.12)) at quadratic order in x can be studied by inserting

Eq. ((5.12)) into expression ((5.11)). We then calculate

∂.ε = bµµ + 2cµµρx
ρ =⇒ ∂ν(∂.ε) = 2cµµν ,

from which we find that

cµνρ = ηµρbµ + ηµνbρ − ηνρbµ with bµ =
1

d
cρρµ.

The resulting transformations are called Special Conformal Transforma-

tions (SCT) and have the following infinitesimal form:

x′µ = xµ + 2(x.b)xµ − (x.x)bµ . (5.13)
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The expression for the full generator [5] (from (2.73)), Gν , of a transformation

is

iGνΦ =
δxµ

δων
∂µΦ− δF

δων
. (5.14)

For an infinitesimal special conformal transformation (SCT), the coordinates

transform like

x′µ = xµ + 2(x · b)xµ − bµx2. (5.15)

If we now suppose the field transforms trivially under a SCT across the entire

space, then δF
δων

= 0. then,

δxµ

δbν
=

δxµ

δ(xρbρ)

δ(xγbγ)

δbν
= 2xνx

µ − x2δµν . (5.16)

then the Generator for the SCT is,

Kν = −i
(
2xνx

µ∂µ − x2∂ν
)
. (5.17)

We have now identified the infinitesimal conformal transformations.

5.5 Special Conformal Transformations

We have now explored all possibilities for conformal transformations at the infinites-

imal level. To find the finite transformations, we must exponentiate the different

infinitesimal transformation that we just found. Although this is straightforward in

principle, it can be tedious (in particular for the SCT). The result is [5, 21–24]

(translation) x′µ = xµ + aµ ,

(dilation) x′µ = αxµ ,

(rotation) x′µ = Mµ
ν x

ν ,

(SCT) x′µ =
xµ − bµx2

1− 2b · x+ b2x2
.

Let us also note that for finite Special Conformal Transformations, we can re-write

the expression as follows [5, 21,22]

x′µ =
xµ − bµx2

1− 2b · x+ b2x2
=

x2

|x− bx2|2
(xµ − bµx2),

=⇒ 1

x′µ
=
xµ − bµx2

x2
,

=⇒ x′µ

x′2
=
xµ

x2
− bµ
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From this relation, we see that the SCT can be understood as an inversion of xµ,

followed by a translation bµ, and followed again by an inversion.

5.6 Conformal Algebra

The generators of conformal transformations are:

(translation) P µ = −i∂µ ,

(dilation) D = −ixµ∂µ ,

(rotation) Lµν = i (xµ∂ν − xν∂µ) ,

(SCT) Kµ = −i
(
2xµxν∂

ν − x2∂µ
)
.

Then the conformal algebra (commutation rules) [5, 21, 22] can be derived as, 1)

commutations among the Kµ,

[Kµ,Kν ] = KµKν − KνKµ ,

= i2
((

2xµxρ∂
ρ − x2∂µ

) (
2xνxρ∂

ρ − x2∂ν
)
−
(
2xνxρ∂

ρ − x2∂ν
) (

2xµxρ∂
ρ − x2∂µ

) )
,

= i2
(
(((

((((
(((((2xµxρ∂

ρ)(2xνxρ∂
ρ)−(((((

(((((2xµxρ∂
ρ)(x2∂ν)−(((((

(((((x2∂µ)(2xνxρ∂
ρ) +((((

((((x2∂µ)(x2∂ν)

−
((((

(((
(((((2xνxρ∂

ρ)(2xµxρ∂
ρ) +((((

(((
((

(2xνxρ∂
ρ)(x2∂µ) +((((

(((
((

(x2∂ν)(2xµxρ∂
ρ)−(((((

((
(x2∂ν)(x2∂µ)

)
,

[Kµ,Kν ] = 0 .X

2) commutations among Kµ and P ν ,

[Kµ, P ν ] = KµP ν − P νKµ = i2(
(
2xµxρ∂

ρ − x2∂µ
)
∂ν − ∂ν

(
2xµxρ∂

ρ − x2∂µ
)
) ,

= i2(
(
(2xµxρ∂

ρ)∂ν − (x2∂µ)∂ν
)
− (2∂ν(xµxρ∂

ρ)− ∂ν(xσxσ∂µ))) ,

= i2(
(
���

���2xµxρ∂
ρ∂ν −����x2∂µ∂ν

)
−
(
2∂νxµxρ∂

ρ + 2xµ∂νxρ∂
ρ +���

���2xµxρ∂
ν∂ρ − ∂νxσxσ∂µ − xσ∂νxσ∂µ −����

��
xσx

σ∂ν∂µ
)
) ,

= i2(−
(
2gνµxρ∂

ρ + 2xµgνρ∂
ρ − ∂νxσxσ∂µ − xσ∂νxσ∂µ

)
) ,

= i2(−
(
2gνµxρ∂

ρ + 2xµgνρ∂
ρ − gνσxσ∂µ − xσgσν∂µ

)
) ,

= i2(−2gνµ̂xρ∂
ρ − (2xµ∂ν − 2xν∂µ)) ,

[Kµ, P ν ] = 2i (gµνD − Lµν) X .
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3) commutations among D and Lµν ,

[D,Lµν ] = DLµν − LµνD = −i2((xρ∂ρ) (xµ∂ν − xν∂µ)− (xµ∂ν − xν∂µ) (xρ∂
ρ)) ,

= −i2(����
�

xρ∂
ρxµ∂ν +���

��xρx
µ∂ρ∂ν −����

�
xρ∂

ρxν∂µ −����
�

xρx
ν∂ρ∂µ −����

�
xµ∂νxρ∂

ρ

−����
�

xµxρ∂
ν∂ρ +���

���xν∂µxρ∂
ρρ+���

��xνxρ∂
µ∂ρ) ,

[D,Lµν ] = 0 X .

4) commutations among D and P µ,

[D,P µ] = DP µ − P µD = i2((xν∂
ν)∂µ − ∂µ(xν∂

ν)) ,

= i2(���
�xν∂

ν∂µ − ∂µxν∂ν −����xν∂
µ∂ν) ,

= −i2gµν ∂ν = −i2∂µ ,

[D,P µ] = iP µ X .

5) commutations among D and Kµ,

[D,Kµ] = DKµ − KµD = i2
(
xρ∂

ρ
(
2xµxν∂

ν − x2∂µ
)
−
(
2xµxν∂

ν − x2∂µ
)
xρ∂

ρ
)
,

= i2
(
2xρ∂

ρ(xµxν∂
ν)− xρ∂ρ(x2∂µ)− (2xµxν∂

ν)xρ∂
ρ + (x2∂µ)xρ∂

ρ
)
,

= i2
(
2xρ∂

ρxµxν∂
ν + 2xρx

µ∂ρxν∂
ν +((((

(((2xρx
µxν∂

ρ∂ν − xρ∂ρx2∂µ −����
�

xρx
2∂ρ∂µ

− 2xµxν∂
νxρ∂

ρ −(((((
((2xµxνxρ∂
ν∂ρ + x2∂µxρ∂

ρ +���
��x2xρ∂
µ∂ρ
)
,

= i2
(
���

���2xρg
ρµxν∂

ν + 2xρx
µ̂gρν∂

ν − xρ∂ρx2∂µ −����
��2xµxνg
ν
ρ∂

ρ + x2gµρ∂
ρ
)
,

= i2
(
2xρx

µ∂ρ − xρ∂ρx2∂µ + x2∂µ
)
= i2

(
2xρ̂x

µ∂ρ − xρ∂ρ(xσxσ)∂µ + x2∂µ
)
,

= i2
(
2xρx

µ∂ρ − xρ∂ρxσxσ∂µ − xρxσ∂ρxσ∂µ + x2∂µ
)
,

= i2
(
2xρx

µ∂ρ − xρgρσxσ∂µ − xρxσgρσ∂µ + x2∂µ
)
,

= i2
(
2xρx

µ∂ρ − xρxρ∂µ − xρxρ∂µ + x2∂µ
)
,

= i2
(
2xµxρ∂

ρ − x2∂µ
)
= (−i)(−i)

(
2xµxρ∂

ρ − x2∂µ
)
,

[D,Kµ] = −iKµ X .
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6) commutations among Kρ and Lµν ,

[Kρ, Lµν ] = KρLµν − LµνKρ ,

= −i2(
(
2xρxσ∂

σ − x2∂ρ
)

(xµ∂ν − xν∂µ)− (xµ∂ν − xν∂µ)
(
2xρxσ∂

σ − x2∂ρ
)
) ,

= −i2((2xρxσ∂σ)(xµ∂ν)− (2xρxσ∂
σ)(xν∂µ)− (x2∂ρ)(xµ∂ν) + (x2∂ρ)(xν∂µ)

− (xµ∂ν)(2xρxσ∂
σ) + (xµ∂ν)(x2∂ρ)) + (xν∂µ)(2xρxσ∂

σ)− (xν∂µ)(x2∂ρ)) ,

= −i2(2xρxσ∂σxµ∂ν + 2xρxσx
µ∂σ∂ν − 2xρxσ∂

σxν∂µ − 2xρxσx
ν∂σ∂µ

− x2∂ρxµ∂ν −����
�

x2xµ∂ρ∂ν + x2∂ρxν∂µ +���
��

x2xν∂ρ∂µ − 2xµ∂νxρxσ∂
σ − 2xµxρ∂νxσ∂

σ

− 2xµxρxσ∂
ν∂σ + xµ∂νx2∂ρ +���

��
xµx2∂ν∂ρ + 2xν∂µxρxσ∂

σ + 2xνxρ∂µxσ∂
σ

+ 2xνxρxσ∂
µ∂σ − xν∂µx2∂ρ −����

�
xνx2∂µ∂ρ) ,

= −i2(����
�

2xρxµ∂ν +((((
(((2xρxσx
µ∂σ∂ν −����

�
2xρxν∂µ −(((((

((2xρxσx
ν∂σ∂µ − x2gρµ∂ν

+ x2gρν∂µ − 2xµgνρxσ∂
σ −����

�
2xµxρ∂ν −(((((

((2xµxρxσ∂
ν∂σ +���

��
xµ∂νx2∂ρ

+ 2xνgµρxσ∂
σ +���

��
2xνxρ∂µ +((((

(((2xνxρxσ∂
µ∂σ −����

�
xν∂µx2∂ρ) ,

= −i2(−x2gρµ∂ν + x2gρν∂µ − 2xµgνρxσ∂
σ + 2xνgµρxσ∂

σ) ,

= −i2(gρµ(2xνxσ∂
σ − x2∂ν)− gρν(2xµxσ∂σ − x2∂µ)) ,

[Kρ, Lµν ] = i (gρµKν − gρνKµ) X .

Therefore the full Conformal algebra is given by

[P µ, P ν ] = 0 ,

[Kµ,Kν ] = 0 ,

[D,P µ] = iP µ ,

[D,Kµ] = −iKµ ,[
P ρ, Lµν̂

]
= i (gρµP ν − gρνP µ) ,

[Kρ, Lµν ] = i (gρµKν − gρνKµ) ,[
Lαβ, Lρσ

]
= −i

(
gβσLαρ − gβρLασ + gαρLβσ − gασLβρ

)
,

[Kµ, P ν ] = 2i (gµνD − Lµν) ,

[D,Lµν ] = 0 .
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Chapter 6

Conclusion & Future Scope

In Chapter 4, we presented the Poincaré algebra in Interpolation form. We showed

the Boost K3 is dynamical in the region where 0 ≤ δ < π
4

but becomes kinematic

in the light-front limit (δ = π
4
).

In Chapter 5, we formally developed the Conformal algebra and showed that the

set of conformal transformations manifestly forms a group, and it has the Poincaré

group as a subgroup. Our future work is to extend the Interpolation method to

Conformal algebra.
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